Publication

The gist of everything new: personalized top-k processing over web 2.0 streams

Karl Aberer, Sebastian Michel, Parisa Haghani
2010
Article de conférence
Résumé

Web 2.0 portals have made content generation easier than ever with millions of users contributing news stories in form of posts in weblogs or short textual snippets as in Twitter. Efficient and effective filtering solutions are key to allow users stay tuned to this ever-growing ocean of information, releasing only relevant trickles of personal interest. In classical information filtering systems, user interests are formulated using standard IR techniques and data from all available information sources is filtered based on a predefined absolute quality-based threshold. In contrast to this restrictive approach which may still overwhelm the user with the returned stream of data, we envision a system which continuously keeps the user updated with only the top-k relevant new information. Freshness of data is guaranteed by considering it valid for a particular time interval, controlled by a sliding window. Considering relevance as relative to the existing pool of new information creates a highly dynamic setting. We present POL-filter which together with our maintenance module constitute an efficient solution to this kind of problem. We show by comprehensive performance evaluations using real world data, obtained from a weblog crawl, that our approach brings performance gains compared to state-of-the-art.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.