Publication

Protein Microarrays Based on Polymer Brushes Prepared via Surface-Initiated Atom Transfer Radical Polymerization

Abstract

Polymer brushes represent an interesting platform for the development of high-capacity protein binding surfaces. Whereas the protein binding properties of polymer brushes have been investigated before, this manuscript evaluates the feasibility of poly(glycidyl methacrylate) (PGMA) and PGMA-co-poly(2-(diethylamino)ethyl methacrylate) (PGMA-co-PDEAEMA) (co)polymer brushes grown via surface-initiated atom transfer radical polymerization (SI-ATRP) as protein reactive substrates in a commercially available microarray system using tantalum-pentoxide-coated optical waveguide-based chips. The performance of the polymer-brush-based protein microarray chips is assessed using commercially available dodecylphosphate (DDP)-modified chips as the benchmark. In contrast to the 2D planar, DDP-coated chips, the polymer-brush-covered chips represent a 3D sampling volume. This was reflected in the results of protein immobilization studies, which indicated that the polymer-brush-based coatings had a higher protein binding capacity as compared to the reference substrates. The protein binding capacity of the polymer-brush-based coatings was found to increase with increasing brush thickness and could also be enhanced by copolymerization of 2-(diethylamino)ethyl methacrylate (DEAEMA), which catalyzes epoxide ring-opening of the glycidyl methacrylate (GMA) units. The performance of the polymer-brush-based microarray chips was evaluated in two proof-of-concept microarray experiments, which involved the detection of biotin-streptavidin binding as well as a model TNF alpha reverse assay. These experiments revealed that the use of polymer-brush-modified microarray chips resulted not only in the highest absolute fluorescence readouts, reflecting the 3D nature and enhanced sampling volume provided by the brush coating, but also in significantly enhanced signal-to-noise ratios. These characteristics make the proposed polymer brushes an attractive alternative to commercially available, 2D microarray surface coatings.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (29)
Protein microarray
A protein microarray (or protein chip) is a high-throughput method used to track the interactions and activities of proteins, and to determine their function, and determining function on a large scale. Its main advantage lies in the fact that large numbers of proteins can be tracked in parallel. The chip consists of a support surface such as a glass slide, nitrocellulose membrane, bead, or microtitre plate, to which an array of capture proteins is bound. Probe molecules, typically labeled with a fluorescent dye, are added to the array.
Polymer
A polymer (ˈpɒlᵻmər; Greek poly-, "many" + -mer, "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic and natural polymers play essential and ubiquitous roles in everyday life. Polymers range from familiar synthetic plastics such as polystyrene to natural biopolymers such as DNA and proteins that are fundamental to biological structure and function.
DNA microarray
A DNA microarray (also commonly known as DNA chip or biochip) is a collection of microscopic DNA spots attached to a solid surface. Scientists use DNA microarrays to measure the expression levels of large numbers of genes simultaneously or to genotype multiple regions of a genome. Each DNA spot contains picomoles (10−12 moles) of a specific DNA sequence, known as probes (or reporters or oligos). These can be a short section of a gene or other DNA element that are used to hybridize a cDNA or cRNA (also called anti-sense RNA) sample (called target) under high-stringency conditions.
Show more
Related publications (35)

Architecturally Diverse Polymer Brushes Prepared via Surface-Initiated Atom Transfer Radical Polymerization

Sabrina Sant

Polymer brushes, which are polymers anchored to a solid substrate by one chainend, have the ability to modify the properties of an underlying substrate, offeringintriguing features such as enhanced lubrication, reduced friction, colloidal stability, and an ...
EPFL2023

Light-Activated, Bioadhesive, Poly(2-hydroxyethyl methacrylate) Brush Coatings

Jian Wang, Dominique Pioletti, Harm-Anton Klok, Peyman Karami, Nariye Cavusoglu Ataman

Rapid adhesion between tissue and synthetic materials is relevant to accelerate wound healing and to facilitate the integration of implantable medical devices. Most frequently, tissue adhesives are applied as a gel or a liquid formulation. This manuscript ...
AMER CHEMICAL SOC2020

Polymer Coatings to Minimize Protein Adsorption in Solid-State Nanopores

Aleksandra Radenovic, Sanjin Marion, Sebastian James Davis, Michael Mayer

Nanopore-based resistive-pulse recordings represent a promising approach for single-molecule biophysics with applications ranging from rapid DNA and RNA sequencing to "fingerprinting" proteins. Based on advances in fabrication methods, solid-state nanopore ...
WILEY-V C H VERLAG GMBH2020
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.