Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
This paper presents an overview of recently developed methods for the indirect detection of N-14 nuclei (spin I = 1) in spinning solids by nuclear magnetic resonance spectroscopy. These methods exploit the transfer of coherence from a neighboring 'spy' nucleus with spin S = (1)/(2), such as 130 or H-1, to single- or double-quantum transitions of 14N nuclei. The two-dimensional correlation methods presented here are closely related to the well-known heteronuclear single- and multiple-quantum correlation (HSQC and HMQC, respectively) experiments, already widely used for the investigation of molecules in liquids. Nitrogen-14 NMR spectra exhibit powder patterns characterized by second- and third-order quadrupolar couplings which can provide important information about structure and dynamics of molecules in powder samples.
David Lyndon Emsley, Yu Rao, Moreno Lelli, Pierrick Berruyer, Gabriele Stevanato, Snaedis Björgvinsdóttir, Andrea Bertarello