vignette|redresse|Spectromètre RMN avec passeur automatique d'échantillons utilisé en chimie organique pour la détermination des structures chimiques. vignette|redresse|Animation présentant le principe de la Résonance Magnétique Nucléaire (RMN). La spectroscopie RMN est une technique qui exploite les propriétés magnétiques de certains noyaux atomiques. Elle est basée sur le phénomène de résonance magnétique nucléaire (RMN), utilisé également en sous le nom d’. Les applications les plus importantes pour la chimie organique sont la RMN du proton et du carbone 13 effectuée sur des solutions liquides. Mais la RMN est aussi applicable à tout noyau possédant un spin non nul, que ce soit dans les solutions liquides ou dans les solides. Certains gaz comme le xénon peuvent aussi être mesurés lorsqu'ils sont absorbés dans des matériaux poreux par exemple. Contrairement à la spectroscopie RMN des solutions qui est utilisée de manière routinière dans les laboratoires académiques ou industriels, la RMN des solides reste légèrement moins abordable sans une connaissance plus approfondie du phénomène RMN. La spectroscopie RMN naît en 1946 lorsque Felix Bloch et Edward Mills Purcell, de manière indépendante, réalisent les premières mesures du magnétisme nucléaire par induction magnétique. Ils reçoivent pour cette invention le prix Nobel de physique en 1952. Les développements sont ensuite conséquents : en 1950, Erwin L. Hahn découvre les échos de spin à la base des nombreuses techniques multi-impulsionnelles utilisées de nos jours. La même année, W. Proctor et W. Dickinson découvrent indépendamment le phénomène de déplacement chimique, découverte fondamentale pour l'essor des applications de la RMN en chimie organique. En 1959, E.R. Andrew démontre que la rotation d'un échantillon autour d'un axe particulier, l'angle magique, permet l'obtention de spectres résolus en RMN des solides (RMN MAS). Enfin, une étape majeure dans le développement de la mesure du phénomène RMN est la conception de la spectroscopie RMN par transformée de Fourier par Richard R.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (28)
MSE-468: Atomistic and quantum simulations of materials
Theory and application of quantum simulations to model, understand, and predict the properties of real materials.
PHYS-438: Fundamentals of biomedical imaging
The goal of this course is to illustrate how modern principles of basic science approaches are integrated into the major biomedical imaging modalities of importance to biology and medicine, with an em
CH-343: Spectroscopy
Introduction into optical spectroscopy of molecules
Afficher plus
Séances de cours associées (174)
Techniques expérimentales: Magnétisation et susceptibilité
Couvre les techniques expérimentales de mesure de l'aimantation et de la sensibilité, y compris les méthodes DC et AC.
Modèles probabilistes pour la régression linéaire
Couvre le modèle probabiliste de régression linéaire et ses applications dans la résonance magnétique nucléaire et l'imagerie par rayons X.
Description quantique de la RMN pulsée
Explore les principes quantiques derrière la spectroscopie RMN pulsée, y compris l'interaction Zeeman et la manipulation de spin par irradiation radiofréquence.
Afficher plus
Concepts associés (16)
Résonance magnétique nucléaire
vignette|175px|Spectromètre de résonance magnétique nucléaire. L'aimant de 21,2 T permet à l'hydrogène (H) de résonner à . La résonance magnétique nucléaire (RMN) est une propriété de certains noyaux atomiques possédant un spin nucléaire (par exemple H, C, O, F, P, Xe...), placés dans un champ magnétique. Lorsqu'ils sont soumis à un rayonnement électromagnétique (radiofréquence), le plus souvent appliqué sous forme d'impulsions, les noyaux atomiques peuvent absorber l'énergie du rayonnement puis la relâcher lors de la relaxation.
Nuclear quadrupole resonance
Nuclear quadrupole resonance spectroscopy or NQR is a chemical analysis technique related to nuclear magnetic resonance (NMR). Unlike NMR, NQR transitions of nuclei can be detected in the absence of a magnetic field, and for this reason NQR spectroscopy is referred to as "zero Field NMR". The NQR resonance is mediated by the interaction of the electric field gradient (EFG) with the quadrupole moment of the nuclear charge distribution.
Effet Overhauser nucléaire
En spectroscopie RMN, l'effet Overhauser nucléaire décrit une interaction entre deux spins à travers l'espace et non pas à travers les liaisons chimiques comme le couplage scalaire. Cette interaction est limitée à environ 5-6 Å. En anglais, cet effet s'appelle "Nuclear Overhauser Effect", soit NOE. Cet acronyme est souvent utilisé en français sous l'expression "effet NOE". Une des conséquences de la résonance magnétique nucléaire est l'interaction dipôle-dipôle à travers l'espace.
Afficher plus
MOOCs associés (20)
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Basic Steps in Magnetic Resonance
A MOOC to discover basic concepts and a wide range of intriguing applications of magnetic resonance to physics, chemistry, and biology
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.