Publication

Model-Based Compressive Sensing for Multi-Party Distant Speech Recognition

Hervé Bourlard, Volkan Cevher, Afsaneh Asaei
2011
Rapport ou document de travail
Résumé

We leverage the recent algorithmic advances in compressive sensing, and propose a novel source separation algorithm for efficient recovery of convolutive speech mixtures in spectro-temporal domain. Compared to the common sparse component analysis techniques, our approach fully exploits structured sparsity models to obtain substantial improvement over the existing state-of-the-art. We evaluate our method for separation and recognition of a target speaker in a multi-party scenario. Our results provide compelling evidence of the effectiveness of sparse recovery formulations in speech recognition.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.