Publication

An improved substructural identification strategy for large structural systems

Ngoc Thanh Trinh
2011
Article
Résumé

To identify physical parameters of a large structural system, the computational challenges in dealing with a large number of unknowns are formidable. A divide-and-conquer approach is often required to partition the structural system into many substructures, each with much lesser unknowns for more accurate and efficient identification. Furthermore, in view of the ill-conditioned nature of inverse analysis, it is highly beneficial to adopt nongradient-based search methods such as genetic algorithm (GA). To this end, this paper presents a GA-based substructural identification strategy for large structural systems. As compared with some recent work on substructural identification, the proposed strategy presents two significant improvements: (i) the use of acceleration measurement to directly account for interaction between substructures without approximation of interface force; and (ii) the use of an improved identification method based on multi-feature GA. In numerical simulations, the mass, damping, and stiffness parameters of a 100-storey shear building, involving 202 unknowns, are identified with very good accuracy (mean error of less than 3%) based on incomplete acceleration measurements with 10% noise. In addition, an experimental study on a 10-storey small-scale steel frame further validates the superior performance of the proposed strategy over complete structural identification.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.