Publication

A behavioral departure time choice model with latent arrival time preference and rewards for peak-hour avoidance

Michel Bierlaire
2010
Article de conférence
Résumé

Departure time choice modeling has been part of main stream travel behavior research for more than three decades. Congestion management schemes are based on the assumption that travelers optimize their departure time choice. Ever since Vickrey, in the late 1960's and later updated by Small in the 1970's, the concept of schedule-delays (early and late) has been the focus of most modeling endeavors. The main idea is that travelers organize their departure time based on a preferred arrival time (PAT). The main challenge of departure time choice models is lack of sufficient and accurate data on travelers' departure and arrival times. Surveillance techniques to capture real departure and arrival times are less frequently adopted probably due to both high costs of the infrastructure and privacy issues. In this respect, Spitsmijden the Dutch peak-avoidance experiment provides researchers a remarkable dataset of revealed preference. In the course of 13 weeks, 340 individuals participated in a program whereby they were rewarded (either with money or credits to acquire a smartphone) for avoiding commuting during the morning peak (7:30-9:30). Participants car use was monitored by electronic vehicle identification, giving information about the time and location of detection. Car detection time is a good enough proxy of departure time given that the identification devices were located very close to the place of residence. Travel times are known from the traffic control systems. In addition, personal travel logs were filled out while socio-demographics and information about work conditions were also collected through surveys before and after the reward experiment. Initial analysis suggests that departure time is characterized by very high variability both across participants and over time. In previous research, discrete-choice models were estimated to find regularities between degree of peak avoidance and reward regimes, socio-demographics and work/household related constraints. They assert that peak avoidance is affected mainly by type and height of the reward. However, other factors also influence behavior, such as availability of alternatives, household and work constraints, access to real-time traffic information as well as certain socio-demographics like gender and education. In this paper we continue with this line of research with a focus on departure time choice behavior during the experiment. We apply the schedule-delay framework albeit in more flexible manner. The utility function has three main components: travel time, schedule delays and the rewards. Departure time is treated as discrete with a choice of ten intervals of 15 minutes from 6:00 to 11:00 AM. Since we do not know the real PAT it is regarded as a latent choice variable. As mentioned, PAT could well vary between participants according to personal characteristics (e.g. gender, education), habitual behavior (commuting frequency) and constraints/supports for changing behavior. This implies that the distribution of the latent choice variable is also heterogeneous. In addition to the latent nature of PAT, the perceived travel time is also a latent variable. This perception could well be dependent on the type of reward as participants in the smartphone treatment had real-time access to travel time information. Since both travel time and PAT are latent, schedule-delay (early and late) are also regarded as latent. Last but not least, the model is specified as a panel given that each participant has at most 65 day/observations. This multitude of latent variables in the choice model makes the estimation a considerable challenge as well as computationally cumbersome and time consuming. Initial results suggest that parameters of the measurement functions of PAT and perceived travel times are significant (mean and s.d estimates). The estimates are well in line with the stated PAT according to survey data. Schedule delay penalties were also significant. We could also verify the importance of the rewards in shifting departure times (increasing off-peak utility). In addition, it seems that the heterogeneity in PAT is dependent on the type of reward (money or smartphone). These are initial findings in we are continuing to work on improving the quality of the estimations. The benefits of this research to understanding the preference of departure time are considerable. These are key issues in traffic management and critical for formulating effective policies and strategies for traffic control systems and demand management. This is a work in progress and we expected to have sufficient results by the deadline for paper submission.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (49)
Time travel in fiction
Time travel is a common theme in fiction, mainly since the late 19th century, and has been depicted in a variety of media, such as literature, television, film, and advertisements. The concept of time travel by mechanical means was popularized in H. G. Wells' 1895 story, The Time Machine. In general, time travel stories focus on the consequences of traveling into the past or the future.
Voyage dans le temps
Le voyage dans le temps est un des grands thèmes de la science-fiction, au point d’être considéré comme un genre à part entière. L’idée d’aller revivre le passé ou de découvrir à l’avance le futur est un rêve humain causé par le fait que l’être humain avance dans le temps de manière permanente, mais irréversible (et, à l’état de veille, apparemment de façon linéaire). La première mention d’un voyage dans le temps serait le personnage de Merlin l’Enchanteur dans le cycle arthurien des chevaliers de la Table ronde, qui visitait les temps passés.
Théorie de la décision
La théorie de la décision est une théorie de mathématiques appliquées ayant pour objet la prise de décision par une entité unique. (Les questions liées à la décision collective relèvent de la théorie du choix social.) La notion de décision intertemporelle découle de la prise en compte du facteur temps dans les problématiques reliant l'offre et la demande, les disponibilités et les contraintes. Ces problématiques sont celles qui découlent des combinaisons possibles entre les disponibilités et les décisions pouvant les impliquer.
Afficher plus
Publications associées (83)

Biases in Information Selection and Processing: Survey Evidence from the Pandemic

Andreas Fuster

We conduct two survey experiments to study which information people choose to consume and how it affects their beliefs. In the first experiment, respondents choose between optimistic and pessimistic article headlines related to the COVID-19 pandemic and ar ...
2024

Curiosity-driven exploration: foundations in neuroscience and computational modeling

Wulfram Gerstner, Alireza Modirshanechi

Curiosity refers to the intrinsic desire of humans and animals to explore the unknown, even when there is no apparent reason to do so. Thus far, no single, widely accepted definition or framework for curiosity has emerged, but there is growing consensus th ...
Cambridge2023

Using Gaming Footage as a Source of Internet Latency Information

Catalina Paz Alvarez Inostroza

Keeping track of Internet latency is a classic measurement problem. Open measurement platforms like RIPE Atlas are a great solution, but they also face challenges: preventing network overload that may result from uncontrolled active measurements, and maint ...
2023
Afficher plus
MOOCs associés (32)
Selected Topics on Discrete Choice
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Selected Topics on Discrete Choice
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Introduction to Discrete Choice Models
The course introduces the theoretical foundations to choice modeling and describes the steps of operational modeling.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.