Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Manycore chips are emerging as the architecture of choice to provide power-scalability and improve performance while riding the Moore’s law. On-chip interconnects are increasingly playing a pivotal role in power- and performance- scalability of such microarchitectures. As supply voltages begin to level off in future technologies, chip designs in general and interconnects in particular are resorting to specialization to provide power- and performance-scalability. In this paper, we make the observation that cache-coherent manycore chips exhibit a duality in on-chip network traffic. Request traffic typically consists of control packets requiring narrow low-power switches, while response traffic often carries cache block-sized payloads that require wider and higher-power switches. We present Cache-Coherence Network-on-Chip (CCNoC), a design to capitalize on this duality in traffic and provide a pair of asymmetric switches that optimize power and performance over conventional onchip interconnects. Cycle-accurate simulation results for a 4x4 chip multiprocessor with a shared last-level cache running commercial server workloads indicate 22% improvement in power over a torus and 38% improvement in power over a mesh with larger channel width, while providing similar performance.
, ,