A finite element method with numerical quadrature is considered for the solution of a class of second-order quasilinear elliptic problems of nonmonotone type. Optimal a priori error estimates for the H-1 and the L-2 norms are derived. The uniqueness of the finite element solution is established for a sufficiently fine mesh. Our results permit the analysis of numerical homogenization methods. (C) 2011 Published by Elsevier Masson SAS on behalf of Academie des sciences.
Jan Sickmann Hesthaven, Reza Mokhtari
Daniel Kressner, Axel Elie Joseph Séguin, Gianluca Ceruti