Publication

Response of testate amoeba assemblages to environmental and climatic changes during the Lateglacial-Holocene transition at Lake Lautrey (Jura Mountains, eastern France)

Edward Mitchell
2010
Journal paper
Abstract

We tested the response of lacustrine testate amoebae (thecamoebians) to climate and environmental changes for the Lateglacial-Holocene transition. The palaeoenvironmental history of the study site (Lake Lautrey, Jura Mountains, eastern France) was previously established based on high-resolution multi-proxy studies of the same core. The present study is characterised by a high taxonomic resolution (54 taxa), inclusion of small species (clown to 25 mu m) and high total counts (>500 individuals per sample on average). Changes in the composition of testate amoeba assemblages (dominant species and assemblage structure), as well as in the accumulation rate (tests cm(-2) a(-1)), corresponded to major climatic phases (i.e. Oldest Dryas, Bolling-Allerod Interstadial, Younger Dryas, Preboreal) as well as changes in organic matter inputs. Furthermore, decreases in the accumulation rate characterised minor short-lived cooling events, such as Older Dryas event or Gerzensee oscillation. However, the Preboreal oscillation, which was well registered by other proxies at Lake Lautrey, could not be recognised in the testate amoeba record. This work demonstrates that lacustrine testate amoebae can be used for palaeoclimatic and palaeoecological reconstructions. Nevertheless, a better understanding of the relation between climate, organic matter and lacustrine testate amoebae requires further high-resolution studies based on multi-proxy approaches and the development of appropriate modern analogues. Copyright (C) 2010 John Wiley & Sons, Ltd.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (41)
Oldest Dryas
The Oldest Dryas is a biostratigraphic subdivision layer corresponding to a relatively abrupt climatic cooling event, or stadial, which occurred during the last glacial retreat. The time period to which the layer corresponds is poorly defined and varies between regions, but it is generally dated as starting at 18.5–17 thousand years (ka) before present (BP) and ending 15–14 ka BP. As with the Younger and Older Dryas events, the stratigraphic layer is marked by abundance of the pollen and other remains of Dryas octopetala, an indicator species that colonizes arctic-alpine regions.
Stadial
Stadials and interstadials are phases dividing the Quaternary period, or the last 2.6 million years. Stadials are periods of colder climate, and interstadials are periods of warmer climate. Each Quaternary climate phase is associated with a Marine Isotope Stage (MIS) number, which describes the alternation between warmer and cooler temperatures, as measured by oxygen isotope data. Stadials have even MIS numbers, and interstadials have odd MIS numbers. The current Holocene interstadial is MIS 1, and the Last Glacial Maximum stadial is MIS 2.
Organic matter
Organic matter, organic material, or natural organic matter refers to the large source of carbon-based compounds found within natural and engineered, terrestrial, and aquatic environments. It is matter composed of organic compounds that have come from the feces and remains of organisms such as plants and animals. Organic molecules can also be made by chemical reactions that do not involve life. Basic structures are created from cellulose, tannin, cutin, and lignin, along with other various proteins, lipids, and carbohydrates.
Show more
Related publications (35)

Spatial patterns of benthic biofilm diversity among streams draining proglacial floodplains

Tom Ian Battin, Hannes Markus Peter, Susheel Bhanu Busi, Grégoire Marie Octave Edouard Michoud, Leïla Ezzat, Massimo Bourquin, Tyler Joe Kohler, Jade Brandani, Stylianos Fodelianakis, Paraskevi Pramateftaki, Matteo Roncoroni

Glacier shrinkage opens new proglacial terrain with pronounced environmental gradients along longitudinal and lateral chronosequences. Despite the environmental harshness of the streams that drain glacier forelands, their benthic biofilms can harbor astoni ...
2022

In-vitro digestion of Tire and Road Wear Particles: Bioavailability of metals and Polycyclic Aromatic Hydrocarbons

Kristin Schirmer, Florian Frédéric Vincent Breider, Benoît Jean Dominique Ferrari, Thibault Béranger Masset

The potential impact of Tire and Road Wear Particles (TRWP) on aquatic organisms has recently gained attention since the occurrence of TRWP in the aquatic environment has been observed in surface water and sediments of numerous regions. Moreover, the inges ...
2021

Estimating mean molecular weight, carbon number, and OM∕OC with mid-infrared spectroscopy in organic particulate matter samples from a monitoring network

Satoshi Takahama, Amir Yazdani

Organic matter (OM) is a major constituent of fine particulate matter, which contributes significantly to degradation of visibility and radiative forcing, and causes adverse health effects. However, due to its sheer compositional complexity, OM is difficul ...
European Geosciences Union2021
Show more
Related MOOCs (1)
Water quality and the biogeochemical engine
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.