Future architectures will feature hundreds to thousands of simple processors and on-chip memories connected through a network-on-chip. Architectural simulators will remain primary tools for design space exploration, performance (and power) evaluation of these massively parallel architectures. However, architectural simulation performance is a serious concern, as virtual platforms and simulation technology are not able to tackle the complexity of 1,000-core future scenarios. The main contribution of this paper is the development of a simulator for 1,000-core processors which exploits the enormous parallel processing capability of low-cost and widely available General Purpose Graphic Processing Units (GPGPU). We demonstrate our GPGPU simulator on a target architecture composed by several cores (i.e. ARM ISA based), with instruction and data caches, connected trough a Networkon- Chip (NoC). Our experiments confirm the feasibility of our approach. Currently, our ongoing work is focused on developing the power models within the simulation engine
Aurélien François Gilbert Bloch
Anastasia Ailamaki, Viktor Sanca, Hamish Mcniece Hill Nicholson, Andreea Nica, Syed Mohammad Aunn Raza
David Atienza Alonso, Giovanni Ansaloni, Alireza Amirshahi, Joshua Alexander Harrison Klein