Publication

Correlation-Aware Reconstruction of Network Coded Sources

Résumé

In this paper, we consider the problem of decoding network coded correlated data when the decoder does not receive sufficient information for exact decoding. We propose an iterative decoding algorithm based on belief propagation that efficiently exploits the data correlation and provides approximate reconstruction of the sources when conventional decoding methods fail. The dependencies among the sources are captured by means of a factor graph. A simple noise model is used in order to describe the pairwise source relationships. The decoding decision is based on MAP estimates that are inferred by message passing over the underlying factor graph. Performance evaluation of the proposed decoding algorithm on correlated data sets consisting of video sequences confirms the efficiency of the proposed algorithm. Simulation results show that high quality reconstruction can be achieved even if significant amount of network coded information is missing at the decoder.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.