Publication

Feature-based no-reference video quality assessment using Extra Trees

Résumé

With the emergence of social networks and improvements in the internet speed, the video data has become an ever-increasing portion of the global internet traffic. Besides the content, the quality of a video sequence is an important issue at the user end which is often affected by various factors such as compression. Therefore, monitoring the quality is crucial for the video content and service providers. A simple monitoring approach is to compare the raw video content (uncompressed) with the received data at the receiver. In most practical scenarios, however, the reference video sequence is not available. Consequently, it is desirable to have a general reference-less method for assessing the perceived quality of any given video sequence. In this paper, a no-reference video quality assessment technique based on video features is proposed. In particular, a long list of video features (21 sets of features, each consisting of 1 to 216 features) is considered and all possible combinations (2(21) - 1) for training an Extra Trees regressor is examined. This choice of the regressor is wisely selected and is observed to perform better than other common regressors. The results reveal that the top 20 performing feature subsets all outperformthe existing featurebased assessment methods in terms of the Pearson linear correlation coefficient (PLCC) or the Spearman rank order correlation coefficient (SROCC). Specially, the best performing regressor achieves PLCC = 0.786 on the test data over the KonVid-1k dataset. It is believed that the results of the comprehensive comparison could be potentially useful for other feature-based video-related problems. The source codes of the implementations are publicly available.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (39)
Pearson correlation coefficient
In statistics, the Pearson correlation coefficient (PCC) is a correlation coefficient that measures linear correlation between two sets of data. It is the ratio between the covariance of two variables and the product of their standard deviations; thus, it is essentially a normalized measurement of the covariance, such that the result always has a value between −1 and 1. As with covariance itself, the measure can only reflect a linear correlation of variables, and ignores many other types of relationships or correlations.
Video quality
Video quality is a characteristic of a video passed through a video transmission or processing system that describes perceived video degradation (typically, compared to the original video). Video processing systems may introduce some amount of distortion or artifacts in the video signal that negatively impacts the user's perception of a system. For many stakeholders in video production and distribution, assurance of video quality is an important task. Video quality evaluation is performed to describe the quality of a set of video sequences under study.
Régression logistique
En statistiques, la régression logistique ou modèle logit est un modèle de régression binomiale. Comme pour tous les modèles de régression binomiale, il s'agit d'expliquer au mieux une variable binaire (la présence ou l'absence d'une caractéristique donnée) par des observations réelles nombreuses, grâce à un modèle mathématique. En d'autres termes d'associer une variable aléatoire de Bernoulli (génériquement notée ) à un vecteur de variables aléatoires . La régression logistique constitue un cas particulier de modèle linéaire généralisé.
Afficher plus
Publications associées (85)

Quantitative T2 Mapping of Acute Pancreatitis

Tom Hilbert, Giulia Piazza

Background: Quantification of the T2 signal by means of T2 mapping in acute pancreatitis (AP) has the potential to quantify the parenchymal edema. Quantitative T2 mapping may overcome the limitations of previously reported scoring systems for reliable asse ...
Hoboken2024

Towards a multiscale point cloud structural similarity metric

Touradj Ebrahimi

Point clouds are effective data structures for the rep- resentation of three-dimensional media and hence adopted in a wide range of practical applications. In many cases, the portrayed data is expected to be visualized by humans. After acquisition, point c ...
2023

Saliency prediction in 360° architectural scenes: Performance and impact of daylight variations

Marilyne Andersen, Sabine Süsstrunk, Caroline Karmann, Bahar Aydemir, Kynthia Chamilothori, Seungryong Kim

Saliency models are image-based prediction models that estimate human visual attention. Such models, when applied to architectural spaces, could pave the way for design decisions where visual attention is taken into account. In this study, we tested the pe ...
2023
Afficher plus
MOOCs associés (2)
Synchrotrons and X-Ray Free Electron Lasers (part 1)
Synchrotrons and X-Ray Free Electron Lasers (part 1)
Synchrotrons and X-Ray Free Electron Lasers (part 2)
The first MOOC to provide an extensive introduction to synchrotron and XFEL facilities and associated techniques and applications.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.