Publication

Stretchable Circuits and Sensors for Robotic Origami

Jamie Paik
2011
Conference paper
Abstract

Programmable materials based on robotic origami have been demonstrated with the capability to fold into 3D shapes starting from a nominally 2D sheet. This concept requires high torque density actuators, flexible electronics and an integrated substrate. We report on two types of stretchable circuitry that are directly applicable to robotic origami: meshed copper traces and liquid-metal-filled channels in an elastomer substrate. Both methods maintain conductivity even at large strains (during stretching) and curvatures (during folding). Both circuit designs are integrated with a tiled origami module actuated by a shape memory alloy actuator. We also integrate a soft curvature sensor into the robotic origami module that measures the full range of motion of the module in real-time.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.