Publication

Three Dimensional Microanalysis by Energy Dispersive Spectrometry

Pierre Burdet
2012
EPFL thesis
Abstract

This thesis is focused on a combined microscopy technique: energy dispersive spectrometry (EDS) is extended to a three dimensional (3D) microanalysis using a so-called "dual-beam microscope": a scanning electron microscope (SEM) equipped with a focused ion beam (FIB). In the sequential acquisition, the surface freshly milled by the FIB is characterised by SEM imaging and EDS mapping. A 3D elemental picture of the specimen is obtained this way. This technique suffers from the same limitations than the 2D EDS mapping, the major one being linked to the volume of X-ray emission that is large due to the required high accelerating voltage. Other limitations of 3D EDS microanalysis are more specific to FIB/SEM technique, such as the low acquisition time per spectrum due to the large number of spectra required in an acquisition. The goal of this thesis was to develop post-processing solutions to overcome the limitations of 3D EDS microanalysis. Three solutions have been developed. As the acquired data are composed of a high number of noisy spectra, multivariate statistic methods are appropriate. Such a technique is adapted to 3D EDS data and provides smoother spectra improving the quantification afterwards. When analysing a feature that is smaller than the volume of X-ray emission, the quantified composition is inaccurate as part of the X-rays are emitted from the feature’s surrounding. To take into account the influence of the neighbouring voxels, an enhanced quantification technique is developed. It is based on a recursive approach adapting an existing complex quantification. Another complementary approach is developed to resolve features too fine for EDS mapping: the segmentation technique is improved by using the higher spatial resolution of SEM images. A sample formed by laser welding of nickel-titanium (NiTi) and stainless-steel wires is characterised by 3D EDS microanalysis. The acquired data are used to demonstrate the gains and the limitations of the three developed processing techniques. With them, the noise-reduced spectra reveal further details of the fine microstructure. Their quantified composition is closer to the one predicted by the phase diagram. Furthermore, the segmented phases used for the 3D visualisation have a resolution close to the one of the SEM images. This visualisation allows a deeper comprehension of the formation of the phases and their morphologies during the implied solidification. This demonstrates the great potential of this technique to characterise samples with complex microstructure and complex composition.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (34)
Scanning electron microscope
A scanning electron microscope (SEM) is a type of electron microscope that produces images of a sample by scanning the surface with a focused beam of electrons. The electrons interact with atoms in the sample, producing various signals that contain information about the surface topography and composition of the sample. The electron beam is scanned in a raster scan pattern, and the position of the beam is combined with the intensity of the detected signal to produce an image.
Electron microscope
An electron microscope is a microscope that uses a beam of electrons as a source of illumination. They use electron optics that are analogous to the glass lenses of an optical light microscope. As the wavelength of an electron can be up to 100,000 times shorter than that of visible light, electron microscopes have a higher resolution of about 0.1 nm, which compares to about 200 nm for light microscopes.
Focused ion beam
Focused ion beam, also known as FIB, is a technique used particularly in the semiconductor industry, materials science and increasingly in the biological field for site-specific analysis, deposition, and ablation of materials. A FIB setup is a scientific instrument that resembles a scanning electron microscope (SEM). However, while the SEM uses a focused beam of electrons to image the sample in the chamber, a FIB setup uses a focused beam of ions instead.
Show more
Related publications (50)

Non-negative matrix factorization-aided phase unmixing and trace element quantification of STEM-EDXS data

Cécile Hébert, Duncan Thomas Lindsay Alexander, James Badro, Farhang Nabiei, Hui Chen

Energy-dispersive X-ray spectroscopy (EDXS) mapping with a scanning transmission electron microscope (STEM) is commonly used for chemical characterization of materials. However, STEM-EDXS quantification becomes challenging when the phases constituting the ...
Elsevier2024

Strontium Substituted Tricalcium Phosphate Bone Cement: Short and Long-Term Time-Resolved Studies and In Vitro Properties

Marta Di Fabrizio

Due to a significant influence of strontium (Sr) on bone regeneration, Sr substituted beta-tricalcium phosphate (Sr-TCP) cement is prepared and investigated by short- and long-term time-resolved techniques. For short-term investigations, energy-dispersive ...
WILEY2022

Poisoning Effects of Cerium Oxide (CeO2) on the Performance of Proton Exchange Membrane Fuel Cells (PEMFCs)

Jan Van Herle, Hossein Pourrahmani

In this study, the poisoning effects of cerium oxide (CeO2) as the contaminant on the performance of proton exchange membrane fuel cells (PEMFCs) are evaluated. An experimental setup was developed to analyze the performance characteristic (I-V) curves in c ...
MDPI2022
Show more
Related MOOCs (21)
Synchrotrons and X-Ray Free Electron Lasers (part 1)
Synchrotrons and X-Ray Free Electron Lasers (part 1)
Synchrotrons and X-Ray Free Electron Lasers (part 2)
The first MOOC to provide an extensive introduction to synchrotron and XFEL facilities and associated techniques and applications.
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.