Publication

Nanocomposite of MoS2 on ordered mesoporous carbon nanospheres: A highly active catalyst for electrochemical hydrogen evolution

Abstract

An efficient electrocatalyst for hydrogen evolution has been developed based upon in situ reduction of MoS2 on ordered mesoporous carbon nanospheres (MoS2/MCNs). The properties of MoS2/MCNs were characterised by scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. Polarisation curves and electrochemical impedance measurements were obtained for MoS2/MCNs modified glassy carbon electrodes. The MoS2/MCNs exhibit high catalytic activity for hydrogen evolution with a low overpotential and a very high current density. A theory outlining the origins of the Tafel slope for a Volmer-Heyrovsky (rate determining step) mechanism of hydrogen evolution at MoS2 catalytic edge sites is presented.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.