The synchronous oscillatory activity characterizing many neurons in a network is often considered to be a mechanism for representing, binding, conveying, and organizing information. A number of models have been proposed to explain high-frequency oscillations, but the mechanisms that underlie slow oscillations are still unclear. Here, we show by means of analytical solutions and simulations that facilitating excitatory (E(f)) synapses onto interneurons in a neural network play a fundamental role, not only in shaping the frequency of slow oscillations, but also in determining the form of the up and down states observed in electrophysiological measurements. Short time constants and strong E(f) synapse-connectivity were found to induce rapid alternations between up and down states, whereas long time constants and weak E(f) synapse connectivity prolonged the time between up states and increased the up state duration. These results suggest a novel role for facilitating excitatory synapses onto interneurons in controlling the form and frequency of slow oscillations in neuronal circuits.
Alexander Mathis, Alberto Silvio Chiappa, Alessandro Marin Vargas, Axel Bisi
Matthias Wolf, Henry Markram, Felix Schürmann, Eilif Benjamin Muller, Srikanth Ramaswamy, Michael Reimann, Daniel Keller, Werner Alfons Hilda Van Geit, James Gonzalo King, Pramod Shivaji Kumbhar, Alexis Arnaudon, Jean-Denis Georges Emile Courcol, Rajnish Ranjan, Armando Romani, András Ecker, Michael Emiel Gevaert, Vishal Sood, Sirio Bolaños Puchet, James Bryden Isbister, Judit Planas Carbonell, Daniela Egas Santander, Maria Reva, Genrich Ivaska, Natali Barros Zulaica, Mustafa Anil Tuncel, Christoph Pokorny, Elvis Boci, Jorge Blanco Alonso, Aleksandra Zuzanna Teska, Darshan Mandge, Polina Litvak, Gianluca Ficarelli, Weina Ji, Giuseppe Chindemi, Christian Andreas Rössert, Omar Awile, Joni Henrikki Herttuainen, Samuel Lieven D. Lapere, Thomas Brice Delemontex, Tanguy Pierre Louis Damart, Alexander Dietz