Publication

Bifurcation Analysis at a Singular Soliton State in Fiber Couplers

Boris Buffoni
2012
Journal paper
Abstract

The system {-u '' + u = u(3) + lambda v, u(x)= u(-x) is an element of R, x is an element of R, -v '' + v = v(3) + lambda u, v(x) = v(-x) is an element of R, x is an element of R, describes pulses in nonlinear fiber couplers. It has the family (U1+lambda, -U1+lambda), -1 < lambda < infinity, of soliton states (that is, homoclinic solutions to the origin), where U1+lambda(x) = root 2(1 + lambda/cosh(root 1 + lambda x). For lambda >= 1, the equilibrium (0, 0) is not hyperbolic and therefore the soliton state (U1+lambda, -U1+lambda) can be qualified as "singular". In N. Akhmediev and A. Ankiewicz [1], it is observed numerically that a branch of homoclinic solutions bifurcates subcritically at lambda = 1 from the family (U1+lambda, -U1+lambda), The aim of the present paper is to give a rigorous proof of the existence of this bifurcation, as desired in A. Ambrosetti and D. Arcoya [3]. A particular feature of the present problem is that the linearized system at (U-2, -U-2) has a non-constant bounded solution that does not vanish at infinity. Hence the bifurcating homoclinic solutions have a transient "spatial" region where they are well described with the help of this bounded function. Moreover the decay to 0 is governed by two different scales, the larger one originating from the singular aspect of (U-2, -U-2). The existence proof developed here relies on the "broken geodesic" technique to match the inside transient region with the outside region.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.