Publication

Electron hopping at the Si(111):B-root 3 surface: Insight from local impurity spectroscopy

Cédric Tournier-Colletta
2013
Journal paper
Abstract

Boron vacancies at the Si( 111):B-root 3 surface are model systems in the comprehension of strongly correlated semiconductor surfaces. By using scanning tunneling spectroscopy, the origin of the single-vacancy electronic structure is addressed. It is shown to originate from the localization of a well-identified dangling-bond surface state with significant B character. The bivacancy defect, which is characterized by energy-split bonding and antibonding states, is interpreted within the textbook diatomic molecule picture. From the hopping parameter, we determine the bandwidth of the surface state from which the impurity state derives and evaluate the strength of many-body effects. Our analysis supports the realization of the Mott-Hubbard insulator state in half-filled dangling-bond surface states on root 3-reconstructed surfaces, as proposed recently for SiC(0001), Sn/Ge(111), and Sn/Si(111). DOI: 10.1103/PhysRevB.87.075427

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.