Publication

Investigating the metabolic changes due to visual stimulation using functional proton magnetic resonance spectroscopy at 7 T

Lijing Xin, Yan Lin
2012
Journal paper
Abstract

Proton magnetic resonance spectroscopy ((1)H-MRS) has been used to demonstrate metabolic changes in the visual cortex on visual stimulation. Small (2% to 11%) but significant stimulation induced increases in lactate, glutamate, and glutathione were observed along with decreases in aspartate, glutamine, and glycine, using (1)H-MRS at 7 T during single and repeated visual stimulation. In addition, decreases in glucose and increases in γ-aminobutyric acid (GABA) were seen but did not reach significance. Changes in glutamate and aspartate are indicative of increased activity of the malate-aspartate shuttle, which taken together with the opposite changes in glucose and lactate, reflect the expected increase in brain energy metabolism. These results are in agreement with those of Mangia et al. In addition, increases in glutamate and GABA coupled with the decrease in glutamine can be interpreted in terms of increased activity of the neurotransmitter cycles. An entirely new observation is the increase of glutathione during prolonged visual stimuli. The similarity of its time course to that of glutamate suggests that it may be a response to the increased release of glutamate or to the increased production of reactive oxygen species. Together, these observations constitute the most detailed analysis to date of functional changes in human brain metabolites.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (34)
Nuclear magnetic resonance spectroscopy
Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. This spectroscopy is based on the measurement of absorption of electromagnetic radiations in the radio frequency region from roughly 4 to 900 MHz. Absorption of radio waves in the presence of magnetic field is accompanied by a special type of nuclear transition, and for this reason, such type of spectroscopy is known as Nuclear Magnetic Resonance Spectroscopy.
Nuclear magnetic resonance spectroscopy of proteins
Nuclear magnetic resonance spectroscopy of proteins (usually abbreviated protein NMR) is a field of structural biology in which NMR spectroscopy is used to obtain information about the structure and dynamics of proteins, and also nucleic acids, and their complexes. The field was pioneered by Richard R. Ernst and Kurt Wüthrich at the ETH, and by Ad Bax, Marius Clore, Angela Gronenborn at the NIH, and Gerhard Wagner at Harvard University, among others.
Nuclear magnetic resonance
Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are perturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic field at the nucleus. This process occurs near resonance, when the oscillation frequency matches the intrinsic frequency of the nuclei, which depends on the strength of the static magnetic field, the chemical environment, and the magnetic properties of the isotope involved; in practical applications with static magnetic fields up to ca.
Show more
Related publications (68)

Robust gamma-aminobutyric acid and energy metabolism measurements by proton and phosphorus magnetic resonance spectroscopy and fingerprinting

Songi Lim

Magnetic resonance spectroscopy (MRS) is the only technique that can detect endogenous metabolites directly and non-invasively in vivo. It allows to identify different metabolites and analyze the dynamic neurochemical processes in the brain, skeletal muscl ...
EPFL2023

Lower glutamate and GABA levels in auditory cortex of tinnitus patients: a 2D-JPRESS MR spectroscopy study

Thorsten Kleinjung, Patrick Karl Alois Neff

We performed magnetic resonance spectroscopy (MRS) on healthy individuals with tinnitus and no hearing loss (n = 16) vs. a matched control group (n = 17) to further elucidate the role of excitatory and inhibitory neurotransmitters in tinnitus. Two-dimensio ...
2022

Diamond-Based Nanoscale Quantum Relaxometry for Sensing Free Radical Production in Cells

Mayeul Sylvain Chipaux, Hoda Shirzad

Diamond magnetometry makes use of fluorescent defects in diamonds to convert magnetic resonance signals into fluorescence. Because optical photons can be detected much more sensitively, this technique currently holds several sensitivity world records for r ...
WILEY-V C H VERLAG GMBH2022
Show more
Related MOOCs (21)
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Show more