Publication

Investigation of charges carrier density in phosphorus and boron doped SiNx:H layers for crystalline silicon solar cells

Abstract

Dielectric layers are of major importance in crystalline silicon solar cells processing, especially as antireflection coatings and for surface passivation purposes. In this paper we investigate the fixed charge densities (Q(fix)) and the effective lifetimes (tau(eff)) of phosphorus (P) and boron (B) doped silicon nitride layers deposited by plasma-enhanced chemical vapour deposition. P-doped layers exhibit a higher tau(eff) than standard undoped layers. In contrast, B-doped layers exhibit lower tau(eff). A strong Qfix decrease is to be seen when increasing the P content within the film. Based on numerical simulations we also demonstrate that the passivation obtained with P- and B-doped layers are limited by the interface states rather than by the fixed charges. (C) 2012 Elsevier B.V. All rights reserved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Crystalline silicon
Crystalline silicon or (c-Si) Is the crystalline forms of silicon, either polycrystalline silicon (poly-Si, consisting of small crystals), or monocrystalline silicon (mono-Si, a continuous crystal). Crystalline silicon is the dominant semiconducting material used in photovoltaic technology for the production of solar cells. These cells are assembled into solar panels as part of a photovoltaic system to generate solar power from sunlight. In electronics, crystalline silicon is typically the monocrystalline form of silicon, and is used for producing microchips.
Solar cell
A solar cell, or photovoltaic cell, is an electronic device that converts the energy of light directly into electricity by the photovoltaic effect, which is a physical phenomenon. It is a form of photoelectric cell, defined as a device whose electrical characteristics, such as current, voltage, or resistance, vary when exposed to light. Individual solar cell devices are often the electrical building blocks of photovoltaic modules, known colloquially as solar panels.
Thin-film solar cell
Thin-film solar cells are made by depositing one or more thin layers (thin films or TFs) of photovoltaic material onto a substrate, such as glass, plastic or metal. Thin-film solar cells are typically a few nanometers (nm) to a few microns (μm) thick–much thinner than the wafers used in conventional crystalline silicon (c-Si) based solar cells, which can be up to 200 μm thick. Thin-film solar cells are commercially used in several technologies, including cadmium telluride (CdTe), copper indium gallium diselenide (CIGS), and amorphous thin-film silicon (a-Si, TF-Si).
Show more
Related publications (103)

Direct high-temperature growth of GaN on Si using trimethylaluminum preflow enabling vertically-conducting heterostructures

Elison de Nazareth Matioli, Alessandro Floriduz

In this work, we demonstrate that GaN can be directly grown at high temperature on Si(111) substrates by metalorganic CVD without using any intentional AlN buffer, by simply employing a trimethylaluminum (TMAl) preflow. We found that n-GaN layers directly ...
Iop Publishing Ltd2024

III-V Nitride Semiconductors Deposited At Low Temperature For Photovoltaic Applications

Jonathan Emanuel Thomet

This thesis reports on the study and use of low temperature processes for the deposition of indium gallium nitride (InGaN) thin films in order to alleviate some of the present drawbacks of its monolitic deposition on silicon for photovoltaic applications. ...
EPFL2023

Bulk Defects and Hydrogenation Kinetics in Crystalline Silicon Solar Cells With Fired Passivating Contacts

Christophe Ballif, Franz-Josef Haug, Andrea Ingenito, Audrey Marie Isabelle Morisset, Philippe Wyss, Mario Joe Lehmann, Père Roca i Cabarrocas

In this article, the effect of the various processing steps during the fabrication of c-Si/SiOx/SiCx fired passivating contacts on the silicon bulk lifetime is studied, and the kinetics of defect deactivation by hydrogenation is investigated. It is found t ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2022
Show more
Related MOOCs (3)
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Microstructure Fabrication Technologies I
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.