Publication

Dynamics of Stochastically Blinking Systems. Part II: Asymptotic Properties

Martin Hasler, Igor Belykh
2013
Journal paper
Abstract

We study stochastically blinking dynamical systems as in the companion paper (Part I). We analyze the asymptotic properties of the blinking system as time goes to infinity. The trajectories of the averaged and blinking system cannot stick together forever, but the trajectories of the blinking system may converge to an attractor of the averaged system. There are four distinct classes of blinking dynamical systems. Two properties differentiate them: single or multiple attractors of the averaged system and their invariance or noninvariance under the dynamics of the blinking system. In the case of invariance, we prove that the trajectories of the blinking system converge to the attractor(s) of the averaged system with high probability if switching is fast. In the noninvariant single attractor case, the trajectories reach a neighborhood of the attractor rapidly and remain close most of the time with high probability when switching is fast. In the noninvariant multiple attractor case, the trajectory may escape to another attractor with small probability. Using the Lyapunov function method, we derive explicit bounds for these probabilities. Each of the four cases is illustrated by a specific example of a blinking dynamical system. From a probability theory perspective, our results are obtained by directly deriving large deviation bounds. They are more conservative than those derived by using the action functional approach, but they are explicit in the parameters of the blinking system.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Attractor
In the mathematical field of dynamical systems, an attractor is a set of states toward which a system tends to evolve, for a wide variety of starting conditions of the system. System values that get close enough to the attractor values remain close even if slightly disturbed. In finite-dimensional systems, the evolving variable may be represented algebraically as an n-dimensional vector. The attractor is a region in n-dimensional space.
Probability density function
In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the random variable would be equal to that sample.
Lyapunov function
In the theory of ordinary differential equations (ODEs), Lyapunov functions, named after Aleksandr Lyapunov, are scalar functions that may be used to prove the stability of an equilibrium of an ODE. Lyapunov functions (also called Lyapunov’s second method for stability) are important to stability theory of dynamical systems and control theory. A similar concept appears in the theory of general state space Markov chains, usually under the name Foster–Lyapunov functions.
Show more
Related publications (33)

Stability: a search for structure

Wouter Jongeneel

In this thesis we study stability from several viewpoints. After covering the practical importance, the rich history and the ever-growing list of manifestations of stability, we study the following. (i) (Statistical identification of stable dynamical syste ...
EPFL2024

The dynamics of unsteady frictional slip pulses

Thibault Didier Roch, Fabian Barras

Self-healing slip pulses are major spatiotemporal failure modes of frictional systems, featuring a characteristic size L(t) and a propagation velocity c(p)(t) (t is time). Here, we develop a theory of slip pulses in realistic rate- and state-dependent fric ...
Washington2023

On Approximations of Data-Driven Chance Constrained Programs over Wasserstein Balls

Daniel Kuhn, Zhi Chen, Wolfram Wiesemann

Distributionally robust chance constrained programs minimize a deterministic cost function subject to the satisfaction of one or more safety conditions with high probability, given that the probability distribution of the uncertain problem parameters affec ...
2022
Show more
Related MOOCs (2)
Advanced statistical physics
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
Advanced statistical physics
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.