Publication

A CMOS-compatible silicon photonic platform for high-speed integrated opto-electronics

Abstract

We have developed a CMOS-compatible Silicon-on-Insulator photonic platform featuring active components such as p- i-n and photoconductive (MIM) Ge-on-Si detectors, p-i-n ring and Mach-Zehnder modulators, and traveling-wave modulators based on a p-n junction driven by an RF transmission line. We have characterized the yield and uniformity of the performance through automated cross-wafer testing, demonstrating that our process is reliable and scalable. The entire platform is capable of more than 40 GB/s data rate. Fabricated at the IME/A-STAR foundry in Singapore, it is available to the worldwide community through OpSIS, a successful multi-project wafer service based at the University of Delaware. After exposing the design, fabrication and performance of the most advanced platform components, we present our newest results obtained after the first public run. These include low loss passives (Y-junctions: 0.28 dB; waveguide crossings: 0.18 dB and cross-talk -41±2 dB; non-uniform grating couplers: 3.2±0.2 dB). All these components were tested across full 8” wafers and exhibited remarkable uniformity. The active devices were improved from the previous design kit to exhibit 3dB bandwidths ranging from 30 GHz (modulators) to 58 GHz (detectors). We also present new packaging services available to OpSIS users: vertical fiber coupling and edge coupling.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.