Publication

In situ Neutron Diffraction during Casting: Determination of Rigidity Point in Grain Refined Al-Cu Alloys

Abstract

The rigidity temperature of a solidifying alloy is the temperature at which the solid plus liquid phases are sufficiently coalesced to transmit long range tensile strains and stresses. It determines the point at which thermally induced deformations start to generate internal stresses in a casting. As such, it is a key parameter in numerical modelling of solidification processes and in studying casting defects such as solidification cracking. This temperature has been determined in Al-Cu alloys using in situ neutron diffraction during casting in a dog bone shaped mould. In such a setup, the thermal contraction of the solidifying material is constrained and stresses develop at a hot spot that is irradiated by neutrons. Diffraction peaks are recorded every 11 s using a large detector, and their evolution allows for the determination of the rigidity temperatures. We measured rigidity temperatures equal to 557 °C and 548 °C, depending on cooling rate, for a grain refined Al-13 wt% Cu alloy. At high cooling rate, rigidity is reached during the formation of the eutectic phase and the solid phase is not sufficiently coalesced, i.e., strong enough, to avoid hot tear formation.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (35)
Metal casting
In metalworking and jewelry making, casting is a process in which a liquid metal is delivered into a mold (usually by a crucible) that contains a negative impression (i.e., a three-dimensional negative image) of the intended shape. The metal is poured into the mold through a hollow channel called a sprue. The metal and mold are then cooled, and the metal part (the casting) is extracted. Casting is most often used for making complex shapes that would be difficult or uneconomical to make by other methods.
Phase (matter)
In the physical sciences, a phase is a region of material that is chemically uniform, physically distinct, and (often) mechanically separable. In a system consisting of ice and water in a glass jar, the ice cubes are one phase, the water is a second phase, and the humid air is a third phase over the ice and water. The glass of the jar is another separate phase. (See .) More precisely, a phase is a region of space (a thermodynamic system), throughout which all physical properties of a material are essentially uniform.
Stress (mechanics)
In continuum mechanics, stress is a physical quantity that describes forces present during deformation. An object being pulled apart, such as a stretched elastic band, is subject to tensile stress and may undergo elongation. An object being pushed together, such as a crumpled sponge, is subject to compressive stress and may undergo shortening. The greater the force and the smaller the cross-sectional area of the body on which it acts, the greater the stress. Stress has units of force per area, such as newtons per square meter (N/m2) or pascal (Pa).
Show more
Related publications (128)

Percolation and phase behavior in cellulose nanocrystal suspensions from nonlinear rheological analysis

Tiffany Abitbol

We examine the influence of surface charge on the percolation, gel-point and phase behavior of cellulose nanocrystal (CNC) suspensions in relation to their nonlinear rheological material response. Desulfation decreases CNC surface charge density which lead ...
ELSEVIER SCI LTD2023

Salt Bridge Structure of Microhydrated Arginine Kinetically Trapped in the Gas Phase by Evaporative Cooling

Andrei Zviagin

Aminoacids and peptides generally exhibit zwitterionic forms withsalt bridge (SB) structures in solution but charge-solvated (CS) motifsin the gas phase. Here, we report a study of non-covalent complexesof the protonated amino acid arginine, ArgH(+)(H2O)( ...
AMER CHEMICAL SOC2023

Skyrmion Control and Phase Transitions in Cu2OSeO3

Thomas Schönenberger

Magnetic skyrmions are nanometric and non-trivial spin textures with non-zero topological charge. Their robustness against perturbations and the possibility to control them using external stimuli make them ideal candidates for future spintronic application ...
EPFL2022
Show more
Related MOOCs (3)
Cement Chemistry and Sustainable Cementitious Materials
Learn the basics of cement chemistry and laboratory best practices for assessment of its key properties.
Sorption and transport in cementitious materials
Learn how to study and improve the durability of cementitious materials.
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz