Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
A high pressure (200 bar) CO2-H2O process was developed for pretreating lignocellulosic biomass at high-solid contents, while minimizing chemical inputs. Hardwood was pretreated at 20 and 40 (wt.%) solids. Switchgrass, corn stover, big bluestem, and mixed perennial grasses (a co-culture of big bluestem and switchgrass) were pretreated at 40 (wt.%) solids. Operating temperatures ranged from 150 to 250°C, and residence times from 20 s to 60 min. At these conditions a biphasic mixture of an H2-Orich liquid (hydrothermal) phase and a CO2-rich supercritical phase coexist. Following pretreatment, samples were then enzymatically hydrolyzed. Total yields, defined as the fraction of the theoretical maximum, were determined for glucose, hemicellulose sugars, and two degradation products: furfural and 5-hydroxymethylfurfural. Response surfaces of yield as a function of temperature and residence time were compared for different moisture contents and biomass species. Pretreatment at 170°C for 60 min gave glucose yields of 77%, 73%, and 68% for 20 and 40 (wt.%) solids mixed hardwood and mixed perennial grasses, respectively. Pretreatment at 160°C for 60 min gave glucan to glucose yields of 81% for switchgrass and 85% for corn stover. © 2010 Wiley Periodicals, Inc.
Ardemis Anoush Boghossian, Hanxuan Wang, Vitalijs Zubkovs
Rolf Gruetter, Bernard Lanz, Andrea Capozzi, Yves Pilloud, Emmanuelle Ines Flatt