Publication

TOUGHENING BY CRACK BRIDGING IN HETEROGENEOUS CERAMICS

William Curtin
1995
Journal paper
Abstract

The toughening of a ceramic by crack bridging is considered, including the heterogeneity caused simply by spatial randomness in the bridge locations, The growth of a single planar crack is investigated numerically by representing the microstructure as an array of discrete springs with heterogeneity in the mechanical properties of each spring, The stresses on each microstructural element are determined, for arbitrary configurations of spring properties and heterogeneity, using a lattice Green function technique. For toughening by (heterogeneous) crack bridging for both elastic and Dugdale bridging mechanisms, the following key physical results are found: (i) growing cracks avoid regions which are efficiently bridged, and do not propagate as selfsimilar penny cracks; (ii) crack growth thus proceeds at lower applied stresses in a heterogeneous material than in an ordered material; (iii) very little toughening is evident for moderate amounts of crack growth in many cases; and (iv) a different R-curve is found for every particular spatial distribution of bridging elements. These results show that material reliability is determined by both the flaw distribution and the ''toughness'' distribution, or local environment, around each flaw. These results also demonstrate that the ''microstructural'' parameters derived from fitting an R-curve to a continuum model may not have an immediate relationship to the actual microstructure; the parameters are ''effective'' parameters that absorb the effects of the heterogeneity. The conceptual issues illuminated by these conclusions must be fully understood and appreciated to further develop microstructure-property relationships in ceramic materials.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (36)
Normal distribution
In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is The parameter is the mean or expectation of the distribution (and also its median and mode), while the parameter is its standard deviation. The variance of the distribution is . A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate.
Stress corrosion cracking
Stress corrosion cracking (SCC) is the growth of crack formation in a corrosive environment. It can lead to unexpected and sudden failure of normally ductile metal alloys subjected to a tensile stress, especially at elevated temperature. SCC is highly chemically specific in that certain alloys are likely to undergo SCC only when exposed to a small number of chemical environments. The chemical environment that causes SCC for a given alloy is often one which is only mildly corrosive to the metal.
Stress–strain analysis
Stress–strain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics, stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other, while strain is the measure of the deformation of the material. In simple terms we can define stress as the force of resistance per unit area, offered by a body against deformation.
Show more
Related publications (46)

Multiaxial fatigue analysis of high-strength steel welded joints using generalized local approaches

Martin Antonio René Garcia

The objective of this thesis is to improve methods for predicting the fatigue life, multiaxial or not, of mild- and more particularly high-strength steels using local approaches that have the capacity to be applicable to almost any cases, hence the term ge ...
EPFL2020

Microstructural controls of anticrack nucleation in highly porous brittle solids

Johan Alexandre Philippe Gaume, Henning Löwe, Jonas Ritter

Porous brittle solids have the ability to collapse and fail even under compressive stresses. In fracture mechanics, this singular behavior, often referred to as anticrack, demands for appropriate continuum models to predict the catastrophic failure. To ide ...
NATURE PUBLISHING GROUP2020

Constructional method of UHPC on steel deck of long span suspension bridge and in-situ experimental test

Jian Zhan

The Second Dongting Lake (SDTL) Bridge is the longest steel truss girder suspension bridge in China, which has a main span of 1480 m. To alleviate deterioration issues in the orthotropic steel deck (OSD), the steel-ultra high performance concrete (UHPC) li ...
EPFL2020
Show more
Related MOOCs (16)
Advanced statistical physics
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
Advanced statistical physics
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.