Résumé
En théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée. Plus formellement, une loi normale est une loi de probabilité absolument continue qui dépend de deux paramètres : son espérance, un nombre réel noté μ, et son écart type, un nombre réel positif noté σ. La densité de probabilité de la loi normale d'espérance μ et d'écart type σ est donnée par : La courbe de cette densité est appelée courbe de Gauss ou courbe en cloche, entre autres. C'est la représentation la plus connue de ces lois. Lorsqu'une variable aléatoire X suit une loi normale, elle est dite gaussienne ou normale et il est habituel d'utiliser la notation avec la variance σ :. La loi normale de moyenne nulle et d'écart type unitaire, , est appelée loi normale centrée réduite ou loi normale standard. Parmi les lois de probabilité, les lois normales prennent une place particulière grâce au théorème central limite. En effet, elles correspondent au comportement, sous certaines conditions, d'une suite d'expériences aléatoires similaires et indépendantes lorsque le nombre d'expériences est très élevé. Grâce à cette propriété, une loi normale permet d'approcher d'autres lois et ainsi de modéliser de nombreuses études scientifiques comme des mesures d'erreurs ou des tests statistiques, en utilisant par exemple les tables de la loi normale centrée réduite. vignette|upright=1.5|alt=Cinq diagrammes en bâtons convergeant vers la densité d'une loi normale| Les diagrammes en bâtons représentent les lois discrètes de la somme de 1, 2, 3, 4 ou 5 dés.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (70)
CH-301: Analytical separation methods
Les étudiants comprennent les bases physico-chimiques des méthodes de séparation chromatographiques et électrophorétiques.
FIN-417: Quantitative risk management
This course is an introduction to quantitative risk management that covers standard statistical methods, multivariate risk factor models, non-linear dependence structures (copula models), as well as p
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
Afficher plus
Séances de cours associées (1 000)
Théorème de la limite centrale : Méthode Delta multivariée
Explore le théorème de la limite centrale, le théorème de Slutsky et la méthode du delta multivarié en probabilité et en convergence de distribution.
Principe des grandes déviations : le théorème de Cramer
Couvre le théorème de Cramer et l'inégalité de Hoeffding dans le contexte du principe des grandes déviations.
Algèbre linéaire: Opérations matricielles
Couvre les opérations et les propriétés matricielles, y compris les valeurs propres et les vecteurs propres.
Afficher plus
Publications associées (1 000)

Extensions of Peer Prediction Incentive Mechanisms

Adam Julian Richardson

As large, data-driven artificial intelligence models become ubiquitous, guaranteeing high data quality is imperative for constructing models. Crowdsourcing, community sensing, and data filtering have long been the standard approaches to guaranteeing or imp ...
EPFL2024

Exploiting the Signal-Leak Bias in Diffusion Models

Sabine Süsstrunk, Radhakrishna Achanta, Mahmut Sami Arpa, Martin Nicolas Everaert, Athanasios Fitsios

There is a bias in the inference pipeline of most diffusion models. This bias arises from a signal leak whose distribution deviates from the noise distribution, creating a discrepancy between training and inference processes. We demonstrate that this signa ...
2024

Valence can control the nonexponential viscoelastic relaxation of multivalent reversible gels

Hugo Camille Valentin Le Roy

Gels made of telechelic polymers connected by reversible cross-linkers are a versatile design platform for biocompatible viscoelastic materials. Their linear response to a step strain displays a fast, near-exponential relaxation when using low-valence cros ...
Amer Assoc Advancement Science2024
Afficher plus
Concepts associés (42)
Paramètre de position
vignette|Animation de la fonction de densité d'une loi normale, en faisant varier la moyenne entre -5 et 5. La moyenne est un paramètre de position et ne fait que déplacer la courbe en forme de cloche. En théorie des probabilités et statistiques, un paramètre de position (ou de localisation) est, comme son nom l'indique, un paramètre qui régit la position d'une densité de probabilité. Si ce paramètre (scalaire ou vectoriel) est noté λ, la densité se présente formellement comme : où f représente en quelque sorte la densité témoin.
Médiane (statistiques)
En théorie des probabilités et en statistiques, la médiane est une valeur qui sépare la moitié inférieure et la moitié supérieure des termes d’une série statistique quantitative ou d’une variable aléatoire réelle. On peut la définir aussi pour une variable ordinale. La médiane est un indicateur de tendance centrale. Par comparaison avec la moyenne, elle est insensible aux valeurs extrêmes mais son calcul est un petit peu plus complexe. En particulier, elle ne peut s’obtenir à partir des médianes de sous-groupes.
Statistique
La statistique est la discipline qui étudie des phénomènes à travers la collecte de données, leur traitement, leur analyse, l'interprétation des résultats et leur présentation afin de rendre ces données compréhensibles par tous. C'est à la fois une branche des mathématiques appliquées, une méthode et un ensemble de techniques. ce qui permet de différencier ses applications mathématiques avec une statistique (avec une minuscule). Le pluriel est également souvent utilisé pour la désigner : « les statistiques ».
Afficher plus
MOOCs associés (32)
Optimization: principles and algorithms - Linear optimization
Introduction to linear optimization, duality and the simplex algorithm.
Optimization: principles and algorithms - Linear optimization
Introduction to linear optimization, duality and the simplex algorithm.
Optimization: principles and algorithms - Network and discrete optimization
Introduction to network optimization and discrete optimization
Afficher plus