Publication

Interface control domain decomposition methods for heterogeneous problems

Abstract

This paper is concerned with the solution of heterogeneous problems by the interface control domain decomposition (ICDD) method, a strategy introduced for the solution of partial differential equations in computational domains partitioned into subdomains that overlap. After reformulating the original boundary value problem by introducing new additional control variables, the unknown traces of the solution at internal subdomain interfaces; the latter are determined by requiring that the (a priori) independent solutions in each subdomain undergo the minimization of a suitable cost functional.We provide an abstract formulation for coupled heterogeneous problems and a general theorem of well-posedness for the associated ICDD problem. Then, we illustrate and validate an efficient algorithm based on the solution of the Schur-complement system restricted solely to the interface control variables by considering two kinds of heterogeneous boundary value problems: the coupling between pure advection and advection-diffusion equations and the coupling between Stokes and Darcy equations. In the latter case, we also compare the ICDD method with a classical approach based on the Beavers-Joseph-Saffman conditions. Copyright (c) 2014 John Wiley & Sons, Ltd.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Partial differential equation
In mathematics, a partial differential equation (PDE) is an equation which computes a function between various partial derivatives of a multivariable function. The function is often thought of as an "unknown" to be solved for, similar to how x is thought of as an unknown number to be solved for in an algebraic equation like x2 − 3x + 2 = 0. However, it is usually impossible to write down explicit formulas for solutions of partial differential equations.
Hyperbolic partial differential equation
In mathematics, a hyperbolic partial differential equation of order is a partial differential equation (PDE) that, roughly speaking, has a well-posed initial value problem for the first derivatives. More precisely, the Cauchy problem can be locally solved for arbitrary initial data along any non-characteristic hypersurface. Many of the equations of mechanics are hyperbolic, and so the study of hyperbolic equations is of substantial contemporary interest. The model hyperbolic equation is the wave equation.
Industrial process control
An industrial process control or simply process control in continuous production processes is a discipline that uses industrial control systems and control theory to achieve a production level of consistency, economy and safety which could not be achieved purely by human manual control. It is implemented widely in industries such as automotive, mining, dredging, oil refining, pulp and paper manufacturing, chemical processing and power generating plants.
Show more
Related publications (38)

Model reduction of coupled systems based on non-intrusive approximations of the boundary response maps

Jan Sickmann Hesthaven, Niccolo' Discacciati

We propose a local, non -intrusive model order reduction technique to accurately approximate the solution of coupled multi -component parametrized systems governed by partial differential equations. Our approach is based on the approximation of the boundar ...
Lausanne2024

Nonparametric estimation for SDE with sparsely sampled paths: An FDA perspective

Victor Panaretos, Neda Mohammadi Jouzdani

We consider the problem of nonparametric estimation of the drift and diffusion coefficients of a Stochastic Differential Equation (SDE), based on n independent replicates {Xi(t) : t is an element of [0 , 1]}13 d B(t), where alpha is an element of {0 , 1} a ...
Amsterdam2023

Adaptive analysis-aware defeaturing

Ondine Gabrielle Chanon

Removing geometrical details from a complex domain is a classical operation in computer aided design for simulation and manufacturing. This procedure simplifies the meshing process, and it enables faster simulations with less memory requirements. However, ...
EPFL2022
Show more
Related MOOCs (12)
Warm-up for EPFL
Warmup EPFL est destiné aux nouvelles étudiantes et étudiants de l'EPFL.
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.