**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Adaptive analysis-aware defeaturing

Abstract

Removing geometrical details from a complex domain is a classical operation in computer aided design for simulation and manufacturing. This procedure simplifies the meshing process, and it enables faster simulations with less memory requirements. However, depending on the partial differential equation that one wants to solve in the geometrical model of interest, removing some important geometrical features may greatly impact the solution accuracy. For instance, in solid mechanics simulations, such features can be holes or fillets near stress concentration regions. Unfortunately, the effect of geometrical simplification on the accuracy of the problem solution is often neglected, because its analysis is a time-consuming task that is often performed manually, based on the expertise of engineers. It is therefore important to have a better understanding of the effect of geometrical model simplification, also called defeaturing, to improve our control on the simulation accuracy along the design and analysis phase.In this thesis, we formalize the process of defeaturing, and we analyze its impact on the accuracy of solutions of some partial differential problems. To achieve this goal, we first precisely define the error between the problem solution defined in the exact geometry, and the one defined in the simplified geometry. Then, we introduce an a posteriori estimator of the energy norm of this error. This allows us to reliably and efficiently control the error coming from the addition or the removal of geometrical features. We subsequently consider a finite element approximation of the defeatured problem, and the induced numerical error is integrated to the proposed defeaturing error estimator. In particular, we address the special case of isogeometric analysis based on (truncated) hierarchical B-splines, in possibly trimmed and multipatch geometries. In this framework, we derive a reliable a posteriori estimator of the overall error, i.e., of the error between the exact solution defined in the exact geometry, and the numerical solution defined in the defeatured geometry.We then propose a two-fold adaptive strategy for analysis-aware defeaturing, which starts by considering a coarse mesh on a fully-defeatured computational domain. On the one hand, the algorithm performs classical finite element mesh refinements in a (partially) defeatured geometry. On the other hand, the strategy also allows for geometrical refinement. That is, at each iteration, the algorithm is able to choose which missing geometrical features should be added to the simplified geometrical model, in order to obtain a more accurate solution.Throughout the thesis, we validate the presented theory, the properties of the aforementioned estimators and the proposed adaptive strategies, thanks to an extensive set of numerical experiments.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (19)

Related MOOCs (74)

Related publications (18)

Geometry

Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a geometer. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts.

Analysis

Analysis (: analyses) is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle (384–322 B.C.), though analysis as a formal concept is a relatively recent development. The word comes from the Ancient Greek ἀνάλυσις (analysis, "a breaking-up" or "an untying;" from ana- "up, throughout" and lysis "a loosening"). From it also comes the word's plural, analyses.

Numerical analysis

Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods that attempt at finding approximate solutions of problems rather than the exact ones. Numerical analysis finds application in all fields of engineering and the physical sciences, and in the 21st century also the life and social sciences, medicine, business and even the arts.

Premiers pas dans MATLAB et Octave avec un regard vers le calcul scientifique

Premiers pas dans MATLAB et Octave avec un regard vers le calcul scientifique

Learn MATLAB and Octave and start experimenting with matrix manipulations, data visualizations, functions and mathematical computations.

Wave phenomena manifest in nature as electromagnetic waves, acoustic waves, and gravitational waves among others.Their descriptions as partial differential equations in electromagnetics, acoustics, an

Modern manufacturing engineering is based on a ``design-through-analysis'' workflow. According to this paradigm, a prototype is first designed with Computer-aided-design (CAD) software and then finali

Over the past decades, timber has gained popularity as a sustainable building material because of the rising environmental awareness. Furthermore, the resurgence of timber has also been encouraged by