Publication

Prediction of the hub vortex instability in a wind turbine wake: stability analysis with eddy-viscosity models calibrated on wind tunnel data

Abstract

The instability of the hub vortex observed in wind turbine wakes has recently been studied by Iungo et al. (J. Fluid Mech., vol. 737, 2013, pp. 499–526) via local stability analysis of the mean velocity field measured through wind tunnel experiments. This analysis was carried out by neglecting the effect of turbulent fluctuations on the development of the coherent perturbations. In the present paper, we perform a stability analysis taking into account the Reynolds stresses modelled by eddy-viscosity models, which are calibrated on the wind tunnel data. This new formulation for the stability analysis leads to the identification of one clear dominant mode associated with the hub vortex instability, which is the one with the largest overall downstream amplification. Moreover, this analysis also predicts accurately the frequency of the hub vortex instability observed experimentally. The proposed formulation is of general interest for the stability analysis of swirling turbulent flows.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (32)
Eddy (fluid dynamics)
In fluid dynamics, an eddy is the swirling of a fluid and the reverse current created when the fluid is in a turbulent flow regime. The moving fluid creates a space devoid of downstream-flowing fluid on the downstream side of the object. Fluid behind the obstacle flows into the void creating a swirl of fluid on each edge of the obstacle, followed by a short reverse flow of fluid behind the obstacle flowing upstream, toward the back of the obstacle. This phenomenon is naturally observed behind large emergent rocks in swift-flowing rivers.
Wind turbine
A wind turbine is a device that converts the kinetic energy of wind into electrical energy. , hundreds of thousands of large turbines, in installations known as wind farms, were generating over 650 gigawatts of power, with 60 GW added each year. Wind turbines are an increasingly important source of intermittent renewable energy, and are used in many countries to lower energy costs and reduce reliance on fossil fuels.
Viscosity
The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity is defined scientifically as a force multiplied by a time divided by an area. Thus its SI units are newton-seconds per square metre, or pascal-seconds. Viscosity quantifies the internal frictional force between adjacent layers of fluid that are in relative motion.
Show more
Related publications (35)

Including the turbulent Schmidt number in the dynamic wake meandering model

Fernando Porté Agel, Peter Andreas Brugger, Corey Dean Markfort

Wind turbine wakes are an important source of power losses and mechanical wear within wind farms. Wake meandering is a low-frequency oscillation of the entire wind turbine wake with respect to the time-averaged centerline. It affects power losses by contri ...
2023

A physics-based model for wind turbine wake expansion in the atmospheric boundary layer

Fernando Porté Agel, Dara Vahidi

Analytical wind turbine wake models are widely used to predict the wake velocity deficit. In these models, the wake growth rate is a key parameter specified mainly with empirical formulations. In this study, a new physics-based model is proposed and valida ...
2022

Wind turbine wakes on escarpments: A wind-tunnel study

Fernando Porté Agel, Arslan Salim Dar

In this study, the wake behind a wind turbine located on an escarpment is investigated using particle-image velocimetry in a wind tunnel. Five different escarpment models are used, which vary in the windward side shape from forward facing steps (FFS) with ...
2022
Show more
Related MOOCs (7)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
Fluid Mechanics
Ce cours de base est composé des sept premiers modules communs à deux cours bachelor, donnés à l’EPFL en génie mécanique et génie civil.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.