Publication

An experimental-numerical investigation of hydrothermal response in adhesively bonded composite structures

Abstract

Water absorption and thermal response of adhesive composite joints were investigated by measurements and numerical simulations. Water diffusivity, saturation, swelling, and thermal expansion of the constituent materials and the joint were obtained from gravimetric experiments and strain measurements using embedded fiber Bragg grating (FBG) sensors. The mechanical response of these materials at different temperatures and water content was characterized by dynamic mechanical analysis. Thermal loading and water absorption in joint specimens were detected by monitoring the FBG wavelength shift caused by thermal expansion or water swelling. The measured parameters were used in finite element models to simulate the response of the embedded sensor. The good correlation of experimental data and simulations confirmed that the change in FBG wavelength could be accurately related to the thermal load or water absorption process. The suitability of the embedded FBG sensors for monitoring of water uptake in adhesive composite joints was demonstrated. (C) 2015 Elsevier Ltd. All rights reserved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Dynamic mechanical analysis
Dynamic mechanical analysis (abbreviated DMA) is a technique used to study and characterize materials. It is most useful for studying the viscoelastic behavior of polymers. A sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature of the material, as well as to identify transitions corresponding to other molecular motions.
Thermal analysis
Thermal analysis is a branch of materials science where the properties of materials are studied as they change with temperature.
Thermomechanical analysis
Thermomechanical analysis (TMA) is a technique used in thermal analysis, a branch of materials science which studies the properties of materials as they change with temperature. Thermomechanical analysis is a subdiscipline of the thermomechanometry (TM) technique. Thermomechanometry is the measurement of a change of a dimension or a mechanical property of the sample while it is subjected to a temperature regime. An associated thermoanalytical method is thermomechanical analysis.
Show more
Related publications (33)

Incorporation of Lignin in Bio-Based Resins for Potential Application in Fiber-Polymer Composites

Mário Alexandre De Jesus Garrido, Mateus De Assunção Hofmann

Bio-based resins, obtained from renewable raw materials, are a more sustainable alternative to oil-based resins for fiber-reinforced polymer (FRP) composites. The incorporation of lignin in those resins has the potential to enhance their performance. This ...
MDPI2023

Swirl number based transposition of flow-induced mechanical stresses from reduced scale to full-size Francis turbine runners

François Avellan, Arthur Tristan Favrel, Christian Landry, Keita Yamamoto, Joao Gomes Pereira Junior

At part load conditions, Francis turbines are subject to the emergence of a hydrodynamic instability in their draft tube, referred to as precessing vortex rope. It induces pressure pulsations in the water passages at the precession frequency of the vortex, ...
2020

Durability of adhesively bonded joints between pultruded GFRP adherends under hygrothermal and natural ageing

Thomas Keller, Joào Pedro Girâo Meireles de Sousa

This paper presents an experimental and numerical study about the durability of adhesively bonded joints between pultruded glass fibre reinforced polymer (GFRP) adherends for civil engineering applications. Single lap joint (SLJ) specimens were manufacture ...
ELSEVIER SCI LTD2019
Show more
Related MOOCs (15)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.