Publication

Light Harvesting and Charge Recombination in CH3NH3PbI3 Perovskite Solar Cells Studied by Hole Transport Layer Thickness Variation

Abstract

A tailored optimization of perovskite solar cells requires a detailed understanding of the processes limiting the device efficiency. Here, we study the role of the hole transport layer (HTL) spiro-MeOTAD and its thickness in a mesoscopic TiO2-based solar cell architecture. We find that a sufficiently thick (200 nm) HTL not only increases the charge carrier collection efficiency but also the light harvesting efficiency. This is due to an enhanced reflection of a smooth HTL/Au electrode interface. The rough CH3NH3PbI3 perovskite surface requires an HTL thickness of >400 nm to avoid surface recombination and guarantee a high-Open-circuit voltage. Analyses of the electroluminescence efficiency and the diode ideality factor show that the open-circuit voltage becomes completely limited by trap-assisted recombination in the perovskite for a thick HTL. Thus, spiro-MeOTAD is a very good HTL choice from the device physics' point of view. The fill factor analyzed by the Suns-V-oc method is not transport limited, but trap-recombination limited as well. Consequently, a further optimization of the device has to focus on defects in the polycrystalline perovskite film.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Perovskite solar cell
A perovskite solar cell (PSC) is a type of solar cell that includes a perovskite-structured compound, most commonly a hybrid organic–inorganic lead or tin halide-based material as the light-harvesting active layer. Perovskite materials, such as methylammonium lead halides and all-inorganic cesium lead halide, are cheap to produce and simple to manufacture. Solar-cell efficiencies of laboratory-scale devices using these materials have increased from 3.8% in 2009 to 25.
Solar-cell efficiency
Solar-cell efficiency refers to the portion of energy in the form of sunlight that can be converted via photovoltaics into electricity by the solar cell. The efficiency of the solar cells used in a photovoltaic system, in combination with latitude and climate, determines the annual energy output of the system. For example, a solar panel with 20% efficiency and an area of 1 m2 will produce 200 kWh/yr at Standard Test Conditions if exposed to the Standard Test Condition solar irradiance value of 1000 W/m2 for 2.
Dye-sensitized solar cell
A dye-sensitized solar cell (DSSC, DSC, DYSC or Grätzel cell) is a low-cost solar cell belonging to the group of thin film solar cells. It is based on a semiconductor formed between a photo-sensitized anode and an electrolyte, a photoelectrochemical system. The modern version of a dye solar cell, also known as the Grätzel cell, was originally co-invented in 1988 by Brian O'Regan and Michael Grätzel at UC Berkeley and this work was later developed by the aforementioned scientists at the École Polytechnique Fédérale de Lausanne (EPFL) until the publication of the first high efficiency DSSC in 1991.
Show more
Related publications (54)

Ion-Dipole Interaction Enabling Highly Efficient CsPbI3 Perovskite Indoor Photovoltaics

Shaik Mohammed Zakeeruddin, Haizhou Lu, Jie Chen, Xiaoyan Wang, Di Zhang, Ziyun Wang, Meng Li, Xingyu Gao

Metal halide perovskites are ideal candidates for indoor photovoltaics (IPVs) because of their easy-to-adjust bandgaps, which can be designed to cover the spectrum of any artificial light source. However, the serious non-radiative carrier recombination und ...
WILEY-V C H VERLAG GMBH2023

All-inorganic halide perovskites for air-processed "n-i-p" monolithic perovskite/organic hybrid tandem solar cells exceeding 23% efficiency

Mohammad Khaja Nazeeruddin

All-perovskite tandem solar cells recently surpassed 26% power conversion efficiency using a Sn(ii)-based halide perovskite rear subcell, which introduces several issues related to the chemical instability and the effectiveness of common, inexpensive inter ...
Cambridge2023

The evolution of triphenylamine hole transport materials for efficient perovskite solar cells

Mohammad Khaja Nazeeruddin

In recent years, the dramatic increase in power conversion efficiency (PCE) coupled with a decrease in the total cost of third-generation solar cells has led to a significant increase in the collaborative research efforts of academic and industrial researc ...
ROYAL SOC CHEMISTRY2022
Show more