Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Automatic processing of multiparty interactions is a research domain with important applications in content browsing, summarization and information retrieval. In recent years, several works have been devoted to find regular patterns which speakers exhibit in a multiparty interaction also known as social roles. Most of the research in literature has generally focused on recognition of scenario specific formal roles. More recently, role coding schemes based on informal social roles have been proposed in literature, defining roles based on the behavior speakers have in the functioning of a small group interaction. Informal social roles represent a flexible classification scheme that can generalize across different scenarios of multiparty interaction. In this thesis, we focus on automatic recognition of informal social roles and exploit the influence of informal social roles on speaker behavior for structuring multiparty interactions. To model speaker behavior, we systematically explore various verbal and non verbal cues extracted from turn taking patterns, vocal expression and linguistic style. The influence of social roles on the behavior cues exhibited by a speaker is modeled using a discriminative approach based on conditional random fields. Experiments performed on several hours of meeting data reveal that classification using conditional random fields improves the role recognition performance. We demonstrate the effectiveness of our approach by evaluating it on previously unseen scenarios of multiparty interaction. Furthermore, we also consider whether formal roles and informal roles can be automatically predicted by the same verbal and nonverbal features. We exploit the influence of social roles on turn taking patterns to improve speaker diarization under distant microphone condition. Our work extends the Hidden Markov model (HMM)- Gaussian mixture model (GMM) speaker diarization system, and is based on jointly estimating both the speaker segmentation and social roles in an audio recording. We modify the minimum duration constraint in HMM-GMM diarization system by using role information to model the expected duration of speaker's turn. We also use social role n-grams as prior information to model speaker interaction patterns. Finally, we demonstrate the application of social roles for the problem of topic segmentation in meetings. We exploit our findings that social roles can dynamically change in conversations and use this information to predict topic changes in meetings. We also present an unsupervised method for topic segmentation which combines social roles and lexical cohesion. Experimental results show that social roles improve performance of both speaker diarization and topic segmentation.
Frédéric Kaplan, Maud Ehrmann, Matteo Romanello, Sven-Nicolas Yoann Najem, Emanuela Boros
Petr Motlicek, Maël Fabien, Aravind Krishnan