Publication

Spatial Sound Localization via Multipath Euclidean Distance Matrix Recovery

Abstract

A novel localization approach is proposed in order to find the position of an individual source using recordings of a single microphone in a reverberant enclosure. The multipath propagation is modeled by multiple virtual microphones as images of the actual single microphone and a multipath distance matrix is constructed whose components consist of the squared distances between the pairs of microphones (real or virtual) or the squared distances between the microphones and the source. The distances between the actual and virtual microphones are computed from the geometry of the enclosure. The microphone-source distances correspond to the support of the early reflections in the room impulse response associated with the source signal acquisition. The low-rank property of the Euclidean distance matrix is exploited to identify this correspondence. Source localization is achieved through optimizing the location of the source matching those measurements. The recording time of the microphone and generation of the source signal is asynchronous and estimated via the proposed procedure. Furthermore, a theoretically optimal joint localization and synchronization algorithm is derived by formulating the source localization as minimization of a quartic cost function. It is shown that the global minimum of the proposed cost function can be efficiently computed by converting it to a generalized trust region subproblem. Numerical simulations on synthetic data and real data recordings obtained by practical tests show the effectiveness of the proposed approach.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.