Publication

Performance and economic optimization of an organic rankine cycle for a gasoline hybrid pneumatic powertrain

Abstract

This article presents an innovative concept for alternative hybridization, without electrical devices. The concept is studied on a C-Segment vehicle with targeted prices between 27,000 and 34,000 euros. Short term hybrid pneumatic energy storage and a waste heat recovery system are introduced for the efficiency improvement of a small downsized gasoline engine. The modeling methodology for the hybrid pneu- matic powertrain is presented. The waste heat recovery system is an organic rankine cycle. An innovative methodology using energy integration and multi-objective optimization is applied for the design of the organic rankine cycle loop. The selection of the organic rankine cycle design is based on techno- economic indicators and is done by using a qualification utility function for the population of solu- tions on the Pareto curve. The concept of hybrid pneumatic powertrain and organic rankine cycle is evaluated on different driving cycles and the economic analysis of the customer mobility is done, ac- cording to his drive profile.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.