Publication

Fringe filtering technique based on local signal reconstruction using noise subspace inflation

Abstract

A noise filtering technique is proposed to filter the fringe pattern recorded in the optical measurement set-up. A single fringe pattern carrying the information on the measurand is treated as a data matrix which can either be complex or real valued. In the first approach, the noise filtering is performed pixel-wise in a windowed data segment generated around each pixel. The singular value decomposition of an enhanced form of this data segment is performed to extract the signal component from a noisy background. This enhancement of matrix has an effect of noise subspace inflation which accommodates maximum amount of noise. In another computationally efficient approach, the data matrix is divided into number of small-sized blocks and filtering is performed block-wise based on the similar noise subspace inflation method. The proposed method has an important ability to identify the spatially varying fringe density and regions of phase discontinuities. The performance of the proposed method is validated with numerical and experimental results.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.