Publication

Electron-beam induced photoresist shrinkage influence on 2D profiles

Vasiliki Tileli
2010
Article de conférence
Résumé

For many years, lithographic resolution has been the main obstacle in keeping the pace of transistor densification to meet Moore's Law. For the 32 nm node and beyond, new lithography techniques will be used, including immersion ArF (iArF) lithography and extreme ultraviolet lithography (EUVL). As in the past, these techniques will use new types of photoresists with the capability to print smaller feature widths and pitches. Also, such smaller feature sizes will require thinner layers of photoresists, such as under 100 nm. In previous papers, we focused on ArF and iArF photoresist shrinkage. We evaluated the magnitude of shrinkage for both R&D and mature resists as a function of chemical formulation, lithographic sensitivity, scanning electron microscope (SEM) beam condition, and feature size. Shrinkage results were determined by the well accepted methodology described in ISMI's CD-SEM Unified Specification. A model for resist shrinkage, while derived elsewhere, was presented, that can be used to curve-fit to the shrinkage data resulting from multiple repeated measurements of resist features. Parameters in the curve-fit allow for metrics quantifying total shrinkage, shrinkage rate, and initial critical dimension (CD) before e-beam exposure. With these parameters and exhaustive measurements, a fundamental understanding of the phenomenology of the shrinkage trends was achieved, including how the shrinkage behaves differently for different sized features. This work was extended in yet another paper in which we presented a 1-D model for resist shrinkage that can be used to curve-fit to shrinkage curves. Calibration of parameters to describe the photoresist material and the electron beam were all that were required to fit the model to real shrinkage data, as long as the photoresist was thick enough that the beam could not penetrate the entire layer of resist. In this paper, we extend this work yet again to a 2-D model of a trapezoidal photoresist profile. This model thus allows CD shrinkage in thin photoresist to be solved, which is now of great interest for upcoming realistic lithographic processing. It also allows us to predict the change in resist profile with electron dose and the influence of initial resist profile on shrinkage characteristics. In this work, the results from the previous paper will be shown to be consistent with numerically simulated results, thus lending credibility to these papers' postulations. Also, results from this 2-D profile model can also give clues as to how we might, in the future, model the shrinkage of contour edges of 3-D shapes. With these findings, we can conclude with observations about the readiness of SEM metrology for the challenges of future photoresist measurement, as well as estimate the errors involved in calculating the original CD from the shrinkage trend. © 2010 Copyright SPIE - The International Society for Optical Engineering.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (34)
Photolithographie
La photolithographie est l'ensemble des opérations permettant de transférer une image (généralement présente sur un masque) vers un substrat. Cette technique est très utilisée dans l'industrie du semi-conducteur. Les motifs de l'image ainsi transférée deviendront par la suite les différentes zones des composants électroniques (exemple : contact, drain...) ou les jonctions entre ces composants.
Lithographie à faisceau d'électrons
L'utilisation d'un faisceau d'électrons pour tracer des motifs sur une surface est connue sous le nom de lithographie par faisceau d'électrons. On parle également de lithographie électronique. Par rapport à la photolithographie, l'avantage de cette technique est qu'elle permet de repousser les limites de la diffraction de la lumière et de dessiner des motifs avec une résolution pouvant aller jusqu'au nanomètre. Cette forme de lithographie a trouvé diverses formes d'application dans la recherche et l'industrie des semi-conducteurs et dans ce qu'il est convenu d'appeler les nanotechnologies.
Lithographie extrême ultraviolet
vignette|La technologie EUV. vignette|Outil de lithographie EUV. La lithographie extrême ultraviolet ou lithographie EUV est un procédé de photolithographie assez semblable aux procédés de lithographie classiques actuels. Il utilise un rayonnement ultraviolet (UV) d'une longueur d'onde de l'ordre de dix à quinze nanomètres (le rayonnement EUV avoisine donc la gamme des rayons X-mous), en remplaçant les objectifs (ou masques dits « en transmission ») par une série de miroirs de précision (exemple des masques dits « en réflexion »).
Afficher plus
Publications associées (87)

Mesoscopic magnetic systems: From fundamental properties to devices

Dirk Grundler

Research into mesoscopic magnetic systems, which incorporate magnetic elements with dimensions ranging from a few nm up to a few 10s of micrometer, has been spurred on by the developments in their fabrication, characterisation, and control. Electron beam a ...
2021

Spontaneous formation of ordered micro-wrinkles on a thermosensitive resist

Jürgen Brugger, Giovanni Boero, Xia Liu, Ana Conde Rubio, Mohammadreza Rostami

Self-organizing patterns with micrometer-scale features are promising for applications in photonics and bioengineering. Their spontaneous formation reduces the number of required processing steps. Here, we report an approach to spontaneously form stochasti ...
2021

Fabrication of plasmonic structures with well-controlled nanometric features: a comparison between lift-off and ion beam etching

Olivier Martin, Christian Santschi, Banafsheh Abasahl

After providing a detailed overview of nanofabrication techniques for plasmonics, we discuss in detail two different approaches for the fabrication of metallic nanostructures based on e-beam lithography. The first approach relies on a negative e-beam resis ...
IOP PUBLISHING LTD2021
Afficher plus
MOOCs associés (14)
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Microstructure Fabrication Technologies I
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.