Publication

Charge-Based Modeling of Double-Gate and Nanowire Junctionless FETs Including Interface-Trapped Charges

Abstract

Nanowire (NW) semiconductors are interesting devices for being used as sensors. Such NWs are doped silicon channels with electrical contacts at both ends, which is a kind of the so-called junctionless (JL) device. However, in contrast with the state-of-the-art CMOS FETs, a relatively high concentration of traps is expected when using these architectures as biosensors, since their surface is supposed to be in contact with chemicals and gases. A major concern is that these traps will substantially modify the charge–voltage characteristics, thus asking for improvement of basic compact models. In this respect, we have included the effect of interface traps in NW and double-gate JL devices through a charge-based model that has been developed previously. The soundness of this approach is confirmed by extensive comparisons with numerical technology computer aided design simulation, while the analytical formulation helps understanding the most relevant parameters of the traps with respect to the technology.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.