Publication

A Sub-0.5 Electron Read Noise VGA Image Sensor in a Standard CMOS Process

Abstract

A sub-0.5e−rms temporal read noise VGA (640H×480V) CMOS image sensor has been integrated in a standard 0.18μm 4PM CMOS process. The low noise performance is achieved exclusively through circuit optimization without any process refinements. The presented imager relies on a 4T pixel of 6.5μm pitch with a properly sized and biased thin oxide PMOS source follower. A full characterization of the proposed image sensor, at room temperature, is presented. With a pixel bias of 1.5μA the sensor chip features an input-referred noise histogram from 0.25 e−rms to a few e−rms peaking at 0.48 e−rms. The imager features a full well capacity of 6400 e− and its frame rate can go up to 80 fps. It also features a fixed pattern noise as low as 0.77%, a lag of 0.1% and a dark current of 5.6e-/s. It is also shown that the implementation of the in-pixel n-well does not impact the quantum efficiency of the pinned photo-diode.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.