Publication

Concentration compactness for critical radial wave maps

Abstract

We consider radially symmetric, energy critical wave maps from (1 + 2)-dimensional Minkowski space into the unit sphere Sm\mathbf{S}^m, m≥1, and prove global regularity and scattering for classical smooth data of finite energy. In addition, we establish a priori bounds on a suitable scattering norm of the radial wave maps and exhibit concentration compactness properties of sequences of radial wave maps with uniformly bounded energies. This extends and complements the beautiful classical work of Christodoulou-Tahvildar-Zadeh [3, 4] and Struwe [31, 33] as well as of Nahas [22] on radial wave maps in the case of the unit sphere as the target. The proof is based upon the concentration compactness/rigidity method of Kenig-Merle [6, 7] and a “twisted” Bahouri-Gérard type profile decomposition [1], following the implementation of this strategy by the second author and Schlag [17] for energy critical wave maps into the hyperbolic plane as well as by the last two authors [16] for the energy critical Maxwell-Klein-Gordon equation.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (34)
N-sphere
In mathematics, an n-sphere or a hypersphere is a topological space that is homeomorphic to a standard n-sphere, which is the set of points in (n + 1)-dimensional Euclidean space that are situated at a constant distance r from a fixed point, called the center. It is the generalization of an ordinary sphere in the ordinary three-dimensional space. The "radius" of a sphere is the constant distance of its points to the center. When the sphere has unit radius, it is usual to call it the unit n-sphere or simply the n-sphere for brevity.
3-sphere
In mathematics, a 3-sphere, glome or hypersphere is a higher-dimensional analogue of a sphere. It may be embedded in 4-dimensional Euclidean space as the set of points equidistant from a fixed central point. Analogous to how the boundary of a ball in three dimensions is an ordinary sphere (or 2-sphere, a two-dimensional surface), the boundary of a ball in four dimensions is a 3-sphere (an object with three dimensions). A 3-sphere is an example of a 3-manifold and an n-sphere.
Riemann sphere
In mathematics, the Riemann sphere, named after Bernhard Riemann, is a model of the extended complex plane: the complex plane plus one point at infinity. This extended plane represents the extended complex numbers, that is, the complex numbers plus a value for infinity. With the Riemann model, the point is near to very large numbers, just as the point is near to very small numbers. The extended complex numbers are useful in complex analysis because they allow for division by zero in some circumstances, in a way that makes expressions such as well-behaved.
Show more
Related publications (44)

Well-posedness Issues For the Half-Wave Maps Equation With Hyperbolic And Spherical Targets

Yang Liu

This thesis is a study of the global well-posedness of the Cauchy problems for half-wave maps from the Minkowski space of dimension n+1 to the 2-dimensional sphere and the hyperbolic plane. The work is mainly based on the results from Krieger-Sire 17' in ...
EPFL2023

Hyperbolic representations of PU(1,n)

Gonzalo Emiliano Ruiz Stolowicz

The work is about the study of group representations in the group of isometries of a separable complex hyperbolic space. The main part is the classification of the representations of the group of isometries of a finite dimensional complex hyperbolic spa ...
EPFL2023

Spectral Hypergraph Sparsifiers of Nearly Linear Size

Mikhail Kapralov, Jakab Tardos

Graph sparsification has been studied extensively over the past two decades, culminating in spectral sparsifiers of optimal size (up to constant factors). Spectral hypergraph sparsification is a natural analogue of this problem, for which optimal bounds on ...
IEEE COMPUTER SOC2022
Show more
Related MOOCs (1)
Introduction to optimization on smooth manifolds: first order methods
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.