Publication

Acetylated tubulin is essential for touch sensation in mice

Abstract

At its most fundamental level, touch sensation requires the translation of mechanical energy into mechanosensitive ion channel opening, thereby generating electro-chemical signals. Our understanding of this process, especially how the cytoskeleton influences it, remains unknown. Here we demonstrate that mice lacking the α-tubulin acetyltransferase Atat1 in sensory neurons display profound deficits in their ability to detect mechanical stimuli. We show that all cutaneous afferent subtypes, including nociceptors have strongly reduced mechanosensitivity upon Atat1 deletion, and that consequently, mice are largely insensitive to mechanical touch and pain. We establish that this broad loss of mechanosensitivity is dependent upon the acetyltransferase activity of Atat1, which when absent leads to a decrease in cellular elasticity. By mimicking α-tubulin acetylation genetically, we show both cellular rigidity and mechanosensitivity can be restored in Atat1 deficient sensory neurons. Hence, our results indicate that by influencing cellular stiffness, α-tubulin acetylation sets the force required for touch.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (35)
Somatosensory system
In physiology, the somatosensory system is the network of neural structures in the brain and body that produce the perception of touch (haptic perception), as well as temperature (thermoception), body position (proprioception), and pain. It is a subset of the sensory nervous system, which also represents visual, auditory, olfactory, and gustatory stimuli. Somatosensation begins when mechano- and thermosensitive structures in the skin or internal organs sense physical stimuli such as pressure on the skin (see mechanotransduction, nociception).
Mechanosensation
Mechanosensation is the transduction of mechanical stimuli into neural signals. Mechanosensation provides the basis for the senses of light touch, hearing, proprioception, and pain. Mechanoreceptors found in the skin, called cutaneous mechanoreceptors, are responsible for the sense of touch. Tiny cells in the inner ear, called hair cells, are responsible for hearing and balance. States of neuropathic pain, such as hyperalgesia and allodynia, are also directly related to mechanosensation.
Sense
A sense is a biological system used by an organism for sensation, the process of gathering information about the world through the detection of stimuli. Although in some cultures five human senses were traditionally identified as such (namely sight, smell, touch, taste, and hearing), it is now recognized that there are many more. Senses used by non-human organisms are even greater in variety and number. During sensation, sense organs collect various stimuli (such as a sound or smell) for transduction, meaning transformation into a form that can be understood by the brain.
Show more
Related publications (34)

Hydraulically Amplified Electrostatic Taxels (HAXELs) for Full Body Haptics

Herbert Shea, Edouard Franck Vincent Gustave Leroy

The ability to mechanically stimulate touch receptors over the entire body is a key feature for fully immersive and highly realistic virtual reality experience. Haptic stickers, flexible arrays of HAXELs (hydraulically amplified TAXels), that enable cutane ...
WILEY2023

Neuronal correlates of goal-directed sensorimotor transformation in sensory, motor and higher-order cortical areas

Anastasiia Oryshchuk

An important function of the brain is to interpret incoming sensory information from the outside world to guide adaptive behavior. Understanding how and where sensory information is transformed into motor commands in a context- and learning-dependent manne ...
EPFL2023

Tubulin engineering by semi-synthesis reveals that polyglutamylation directs detyrosination

Pierre Gönczy, Beat Fierz, Luc Reymond, Georgios Hatzopoulos, Cédric Pourroy, Po-Han Chang, Nora Guidotti, Ninad Dilip Agashe, Timothy Matthias Reichart, Eduard Hubert Theodoor Marius Ebberink, Fabian Zacharias Schneider

Microtubules, a critical component of the cytoskeleton, carry post-translational modifications (PTMs) that are important for the regulation of key cellular processes. Long-lived microtubules, in neurons particularly, exhibit both detyrosination of a-tubuli ...
NATURE PORTFOLIO2023
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.