Damage recovery after low-velocity impact has been assessed in woven E-glass fibre-reinforced polymer composites with an epoxy matrix and a blend of epoxy and 25 vol% of poly(e-caprolactone) (PCL). Impact was carried out at three energy levels (8.5, 17, 34 J) and composites with epoxy-PCL blends demonstrated similar energy absorption capacity as compared to pure epoxy composites even though the extent of damage (quantified by C-scans and optical microscopy) was higher. Ultimate compressive residual strength of the modified composites was, for the different impact energy levels, 23-33% lower as compared to unmodified composites. Healing efficiency after a thermal mending cycle at 150 degrees C for 30 min has been quantified using three complementary characterization methods; impact damage could be recovered from 20% to 100% depending on the impact energy level. These modified matrix composites are thus able to fully recover low-velocity impact damage at energy levels often met in real structures. (C) 2017 Elsevier Ltd. All rights reserved.
Jacobus Gerardus Rudolph Staal
Véronique Michaud, Jacobus Gerardus Rudolph Staal, Baris Çaglar
Véronique Michaud, Valentin Rougier