Publication

High-pressure NMR spectroscopic and calorimetric studies on formic acid dehydrogenation and carbon dioxide hydrogenation

Cornel Fink
2018
EPFL thesis
Abstract

Our current energy production is convenient and simple, but it is not sustainable. The negative impacts on our environment are omnipresent in the form of smog, extinction of species, and global warming. A major challenge of our generation is the transition to new, responsible methods of energy production. The maxim is renewable energy. Hydrogen could serve as an intermediary energy carrier. However, problems arise with the storage of hydrogen due to safety concerns and low volumetric energy density. The reduction of carbon dioxide (CO2) to formic acid (FA) is an elegant process to “compress” hydrogen by transforming it into a chemical which is easier and safer to handle. In this dissertation, catalytic FA dehydrogenation, CO2 reduction and calorimetric studies of the involved thermodynamics are described.

The first chapter provides a global overview, beginning with general considerations about energy economy, then crossing over to hydrogen storage and infrastructure for a future hydrogen economy, before discussing FA as a hydrogen storage medium and summarizing the developments of FA dehydrogenation and CO2 hydrogenation.

Chapter two describes different compounds we have studied as potential catalysts for FA dehydrogenation and CO2 hydrogenation. The focus is on complexes of Ir, Rh, and Ru regarding metals, and on Cp* and an ethylene-spaced diamine as ligands. Other motifs were also explored including Ru-phosphine complexes which afforded unexpected results. The most promising candidates are examined more closely.

The third chapter summarizes our findings of formic acid dehydrogenation with homogeneous catalysts, presented in three parts. Each subchapter highlights a different structural feature or metal center. The first one focuses on Ir and Rh metal centers, equipped with Cp* and diamines. In the second section, we explore the catalytic performance of a RAPTA-type precatalyst, and the last one addresses our achievements with a rhodium catalyst containing Cp* and di(1-pyrazolyl)methane ligands. The catalysts were evaluated towards core properties such as stability (TON), activity (TOF) and recycling.

Chapter four elucidates the interactions of FA with different solvents and additives, which influence the kinetics and thermodynamics of FA dehydrogenation and CO2 hydrogenation. NMR and FT-IR spectroscopy, conductometry, calorimetric measurements and computational methods were used to analyze the systems thoroughly.

In chapter five, high-pressure calorimetric measurements are employed to quantify the actual energy balance during the endothermic process of FA dehydrogenation. For this purpose, we modified an off-the-shelf high-pressure reactor to suit our needs and constructed a thermo-controlled environment.

Chapter six describes our research into catalytic CO2 hydrogenation to FA with two ruthenium-based phosphine pre-catalysts. One has three 1,4,7-triaza-9-phosphatricyclotridecane (CAP) ligands coordinated, which is a just recently described phosphine compound. The other complex is prepared via a straightforward synthesis route with an inexpensive, simple ligand. Both are stable in aqueous FA over weeks, making them potential catalysts for large-scale application.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (39)
Hydrogen economy
The hydrogen economy uses hydrogen to decarbonize economic sectors which are hard to electrify, essentially, the "hard-to-abate" sectors such as cement, steel, long-haul transport, etc. In order to phase out fossil fuels and limit climate change, hydrogen can be created from water using renewable sources such as wind and solar, and its combustion only releases water vapor into the atmosphere. Although with a very low volumetric energy density hydrogen is an energetic fuel, frequently used as rocket fuel, but numerous technical challenges prevent the creation of a large-scale hydrogen economy.
Hydrogen storage
Several methods exist for storing hydrogen. These include mechanical approaches such as using high pressures and low temperatures, or employing chemical compounds that release H2 upon demand. While large amounts of hydrogen are produced by various industries, it is mostly consumed at the site of production, notably for the synthesis of ammonia. For many years hydrogen has been stored as compressed gas or cryogenic liquid, and transported as such in cylinders, tubes, and cryogenic tanks for use in industry or as propellant in space programs.
Hydrogen technologies
Hydrogen technologies are technologies that relate to the production and use of hydrogen as a part hydrogen economy. Hydrogen technologies are applicable for many uses. Some hydrogen technologies are carbon neutral and could have a role in preventing climate change and a possible future hydrogen economy. Hydrogen is a chemical widely used in various applications including ammonia production, oil refining and energy. The most common methods for producing hydrogen on an industrial scale are: Steam reforming, oil reforming, coal gasification, water electrolysis.
Show more
Related publications (273)

Engineering Frustrated Lewis Pair Active Sites in Porous Organic Scaffolds for Catalytic CO2 Hydrogenation

Shubhajit Das, Rubén Laplaza Solanas, Jacob Terence Blaskovits

Frustrated Lewis pairs (FLPs), featuring reactive combinations of Lewis acids and Lewis bases, have been utilized for myriad metal-free homogeneous catalytic processes. Immobilizing the active Lewis sites to a solid support, especially to porous scaffolds, ...
Amer Chemical Soc2024

A diversity-driven discovery of potential nanoporous materials for energy-related applications

Sauradeep Majumdar

The design and discovery of potential novel materials is critical for the advancement of climate change mitigation technologies. In this respect, metal-organic frameworks (MOFs) have received considerable attention over the last two decades. The combinatio ...
EPFL2024

Development of Ti-Zr-Mn based AB 2 type metal hydrides alloys for an 865 bar two-stage hydrogen compressor

Andreas Züttel, Noris André Gallandat, Rui Li

This study reports the development of a new Ti-Zr-Mn-based AB 2 type hydrogen storage alloys for a two-stage metal hydride hydrogen compressor (MHHC). The hydrogen storage alloys are designed to compress hydrogen from 35 to 865 bar within a temperature dif ...
Pergamon-Elsevier Science Ltd2024
Show more
Related MOOCs (19)
Thermodynamics
Ce cours complète le MOOC « Thermodynamique : fondements » qui vous permettra de mettre en application les concepts fondamentaux de la thermodynamique. Pour atteindre cet objectif, le Professeur J.-P
Thermodynamics
Ce cours complète le MOOC « Thermodynamique : fondements » qui vous permettra de mettre en application les concepts fondamentaux de la thermodynamique. Pour atteindre cet objectif, le Professeur J.-P
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
Show more