Publication

A local discontinuous Galerkin gradient discretization method for linear and quasilinear elliptic equations

Abstract

A local weighted discontinuous Galerkin gradient discretization method for solving elliptic equations is introduced. The local scheme is based on a coarse grid and successively improves the solution solving a sequence of local elliptic problems in high gradient regions. Using the gradient discretization framework we prove convergence of the scheme for linear and quasilinear equations under minimal regularity assumptions. The error due to artificial boundary conditions is also analyzed, shown to be of higher order and shown to depend only locally on the regularity of the solution. Numerical experiments illustrate our theoretical findings and the local method’s accuracy is compared against the non local approach.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (37)
Hilbert scheme
In algebraic geometry, a branch of mathematics, a Hilbert scheme is a scheme that is the parameter space for the closed subschemes of some projective space (or a more general projective scheme), refining the Chow variety. The Hilbert scheme is a disjoint union of projective subschemes corresponding to Hilbert polynomials. The basic theory of Hilbert schemes was developed by . Hironaka's example shows that non-projective varieties need not have Hilbert schemes.
Group scheme
In mathematics, a group scheme is a type of object from algebraic geometry equipped with a composition law. Group schemes arise naturally as symmetries of schemes, and they generalize algebraic groups, in the sense that all algebraic groups have group scheme structure, but group schemes are not necessarily connected, smooth, or defined over a field. This extra generality allows one to study richer infinitesimal structures, and this can help one to understand and answer questions of arithmetic significance.
Elliptic curve
In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point O. An elliptic curve is defined over a field K and describes points in K^2, the Cartesian product of K with itself. If the field's characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which consists of solutions (x, y) for: for some coefficients a and b in K. The curve is required to be non-singular, which means that the curve has no cusps or self-intersections.
Show more
Related publications (52)

Toward plasma drifts in EMC3: Implementation of gradient, divergence, and particle tracing schemes

Matthieu Benoit C. Jacobs

This paper presents a first implementation of gradient, divergence, and particle tracing schemes for the EMC3 code, a stochastic 3D plasma fluid code widely employed for edge plasma and impurity transport modeling in tokamaks and stellarators. These scheme ...
Weinheim2024

On the fast assemblage of finite element matrices with application to nonlinear heat transfer problems

The finite element method is a well-established method for the numerical solution of partial differential equations (PDEs), both linear and nonlinear. However, the repeated re -assemblage of finite element matrices for nonlinear PDEs is frequently pointed ...
ELSEVIER SCIENCE INC2023

Efficient Meso-Scale Modeling of Alkali-Silica-Reaction Damage in Concrete

Ali Falsafi

The alkali-silica reaction (ASR), also known as concrete cancer, is one of the most prevalent causes of concrete degradation. In this chemical reaction, amorphous silica in the aggregates reacts with alkalis in the pore solution. By absorbing water, hydrop ...
EPFL2022
Show more
Related MOOCs (32)
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 2)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Show more