In algebraic geometry, a branch of mathematics, a Hilbert scheme is a scheme that is the parameter space for the closed subschemes of some projective space (or a more general projective scheme), refining the Chow variety. The Hilbert scheme is a disjoint union of projective subschemes corresponding to Hilbert polynomials. The basic theory of Hilbert schemes was developed by . Hironaka's example shows that non-projective varieties need not have Hilbert schemes. The Hilbert scheme of classifies closed subschemes of projective space in the following sense: For any locally Noetherian scheme S, the set of S-valued points of the Hilbert scheme is naturally isomorphic to the set of closed subschemes of that are flat over S. The closed subschemes of that are flat over S can informally be thought of as the families of subschemes of projective space parameterized by S. The Hilbert scheme breaks up as a disjoint union of pieces corresponding to the Hilbert polynomial of the subschemes of projective space with Hilbert polynomial P. Each of these pieces is projective over . Grothendieck constructed the Hilbert scheme of -dimensional projective space as a subscheme of a Grassmannian defined by the vanishing of various determinants. Its fundamental property is that for a scheme , it represents the functor whose -valued points are the closed subschemes of that are flat over . If is a subscheme of -dimensional projective space, then corresponds to a graded ideal of the polynomial ring in variables, with graded pieces . For sufficiently large all higher cohomology groups of with coefficients in vanish. Using the exact sequencewe have has dimension , where is the Hilbert polynomial of projective space. This can be shown by tensoring the exact sequence above by the locally flat sheaves , giving an exact sequence where the latter two terms have trivial cohomology, implying the triviality of the higher cohomology of . Note that we are using the equality of the Hilbert polynomial of a coherent sheaf with the Euler-characteristic of its sheaf cohomology groups.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.