Publication

Sr2Pt8−x As: a layered incommensurately modulated metal with saturated resistivity

Abstract

The high-pressure synthesis and incommensurately modulated structure are reported for the new compound Sr2Pt8-xAs, with x = 0.715 (5). The structure consists of Sr2Pt3 As layers alternating with Pt-only corrugated grids. Ab initio calculations predict a metallic character with a dominant role of the Pt d electrons. The electrical resistivity (rho) and Seebeck coefficient confirm the metallic character, but surprisingly, rho showed a near-flat temperature dependence. This observation fits the description of the Mooij correlation for electrical resistivity in disordered metals, originally developed for statistically distributed point defects. The discussed material has a long-range crystallographic order, but the high concentration of Pt vacancies, incommensurately ordered, strongly influences the electronic conduction properties. This result extends the range of validity of the Mooij correlation to long-range ordered incommensurately modulated vacancies. Motivated by the layered structure, the resistivity anisotropy was measured in a focused-ion-beam micro-fabricated well oriented single crystal. A low resistivity anisotropy indicates that the layers are electrically coupled and conduction channels along different directions are intermixed.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.