Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The strong growth condition (SGC) is known to be a sufficient condition for linear convergence of the stochastic gradient method using a constant step-size γ (SGM-CS). In this paper, we provide a necessary condition, for the linear convergence of SGM-CS, that is weaker than SGC. Moreover, when this necessary is violated up to a additive perturbation σ, we show that both the projected stochastic gradient method using a constant step-size, under the restricted strong convexity assumption, and the proximal stochastic gradient method, under the strong convexity assumption, exhibit linear convergence to a noise dominated region, whose distance to the optimal solution is proportional to γσ.
Nicolas Henri Bernard Flammarion, Hristo Georgiev Papazov, Scott William Pesme
Volkan Cevher, Kimon Antonakopoulos