Résumé
L'algorithme du gradient stochastique est une méthode de descente de gradient (itérative) utilisée pour la minimisation d'une fonction objectif qui est écrite comme une somme de fonctions différentiables. À la fois l'estimation statistique et l'apprentissage automatique s'intéressent au problème de la minimisation d'une fonction objectif qui a la forme d'une somme : où le paramètre qui minimise doit être estimé. Chacune des fonctions est généralement associée avec la -ème observation de l'ensemble des données (utilisées pour l'apprentissage). En statistique classique, les problèmes de minimisation de sommes apparaissent notamment dans la méthode des moindres carrés et dans la méthode de maximum de vraisemblance (pour des observations indépendantes). Les estimateurs qui apparaissent alors comme minimiseurs de sommes sont appelés M-estimateur. Cependant, en statistique, il est su depuis longtemps qu'exiger ne serait-ce qu'une minimisation locale est trop restrictive pour certains problèmes d'estimation de maximum de vraisemblance, comme montré dans le célèbre exemple de Thomas Ferguson. Ainsi, les théoriciens des statistiques modernes considèrent souvent les points stationnaires de la fonction de vraisemblance (ou bien les zéros de sa dérivée, la fonction score, et d'autres équations d'estimation). Le problème de la minimisation d'une somme se retrouve aussi dans la minimisation du risque empirique : dans ce cas, est la valeur de la fonction objectif pour le -ème exemple, et est le risque empirique. Lorsqu'elle est utilisée pour minimiser cette fonction, la méthode standard de descente de gradient correspond à cette itération : où est le pas de l'itération (parfois appelé le taux d'apprentissage en apprentissage automatique). Très souvent, les fonctions élémentaires constituant la somme revêtent une forme simple qui permet le calcul efficace de la fonction somme et de son gradient (qui n'est autre que la somme des gradients des fonctions élémentaires).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.