Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The two classic image restoration tasks, demosaicing and super-resolution, have traditionally always been studied indepen- dently. That is sub-optimal as sequential processing, demosaic- ing and then super-resolution, may lead to amplification of ar- tifacts. In this paper, we show that such accumulation of er- rors can be easily averted by jointly performing demosaicing and super-resolution. To this end, we propose a deep residual net- work for learning an end-to-end mapping between Bayer images and high-resolution images. Our deep residual demosaicing and super-resolution network is able to recover high-quality super- resolved images from low-resolution Bayer mosaics in a single step without producing the artifacts common to such processing when the two operations are done separately. We perform exten- sive experiments to show that our deep residual network achieves demosaiced and super-resolved images that are superior to the state-of-the-art both qualitatively and quantitatively.