Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Light detection and quantification is fundamental to the functioning of a broad palette of technologies. While expensive avalanche photodiodes and superconducting bolometers are examples of detectors achieving single-photon sensitivity and time resolutions down to the picosecond range, thermoelectric-based photodetectors are much more affordable alternatives that can be used to measure substantially higher levels of light power (few kW/cm2). However, in thermoelectric detectors, achieving broadband or wavelength-selective performance with high sensitivity and good temporal resolution requires careful design of the absorbing element. Here, combining the high absorptivity and low heat capacity of a nanoengineered plasmonic thin-film absorber with the robustness and linear response of a thermoelectric sensor, we present a hybrid detector for visible and near-infrared light achieving response times of the order of 100 milliseconds, almost four times shorter than the same thermoelectric device covered with a conventional absorber. Furthermore, we show an almost two times higher light-to-electricity efficiency upon replacing the conventional absorber with a plasmonic absorber. With these improvements, which are direct results of the efficiency and ultra-small thickness of the plasmonic absorber, this hybrid detector constitutes an ideal component for various medium-intensity light sensing applications requiring spectrally tailored absorption coatings with either broadband or narrowband characteristics.
, , ,